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ABSTRACT

Mobile crowdsensing (MCS) has become a popular paradigm for
data collection in urban environments. In MCS systems, a crowd
supplies sensing information for monitoring phenomena through
mobile devices. Typically, a large number of participants is required
to make a sensing campaign successful. For such a reason, it is of-
ten not practical for researchers to build and deploy large testbeds
to assess the performance of frameworks and algorithms for data
collection, user recruitment, and evaluating the quality of informa-
tion. Simulations offer a valid alternative. In this paper, we present
CrowdSenSim 2.0, a significant extension of the popular Crowd-
SenSim simulation platform. CrowdSenSim 2.0 features a stateful
approach to support algorithms where the chronological order of
events matters, extensions of the architectural modules, including
an additional system to model urban environments, code refactor-
ing, and parallel execution of algorithms. All these improvements
boost the performances of the simulator and make the runtime
execution and memory utilization significantly lower, also enabling
the support for larger simulation scenarios. We demonstrate retro-
compatibility with the older platform and evaluate as a case study
a stateful data collection algorithm.
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1 INTRODUCTION

Mobile crowdsensing (MCS) gained exponential interest in the last
years and has become one of the most promising paradigms for
data collection in urban environments within the scope of smart
cities [3]. MCS systems gather data from sensors typically embed-
ded in citizens’ mobile devices, such as smartphones, tablets, and
wearables. The number of worldwide smartphones sales is still
increasing according to Gartner statistics, reaching 1.55 billion
units in 2018 [7]. The crowd analytics market is projected to reach
USD 1 142.5 million by 2021, raising from USD 385.1 million of 2016
at a compound annual growth rate of 24.3% [11].

The success of a MCS campaign typically relies on large par-
ticipation of users [14]. Unfortunately, often it is not feasible to
develop testbeds and platforms that involve a multitude of citizens!.
On the one hand, the cost of recruitment scales with the number of
users involved and the amount of data collected. On the other hand,
the required time for setting up a large-scale sensing campaign is
prohibitively long. To this end, simulators offer a valid alternative
to assess the performance of MCS systems in city-wide scenarios
with large user participation in a reasonable time. Specifically, sim-
ulators are well-suited to assess and compare the performance of
specific aspects of MCS systems (e.g., the decision process to sense
and report data).

In this work, we present CrowdSenSim 2.0, a stateful simula-
tion platform for developing MCS systems in urban environments
for Smart Cities applications. The simulator has been developed
in order to be general-purpose, i.e., to cover many use cases and
architectures as well as implementing several MCS aspects such as
energy, coverage, realistic user mobility, real urban environments,
communication infrastructures, recruitment, and data collection

'In the rest of the paper, we will use the terms users, citizens, and participants
interchangeably



algorithms. CrowdSenSim 2.0 is based on the architecture of Crowd-
SenSim [5]. From the original version, we kept its core architecture
and re-implemented almost integrally the simulator engine, besides
several other improvements. As a matter of fact, the legacy ver-
sion of CrowdSenSim can simulate with a high level of detail MCS
systems in urban scenarios and assess the energy consumption
of mobile devices. However, it lacks adaptation to several MCS
applications that require features such as statefulness and flexible
event triggering. Indeed, as it will be explained in § 3, the original
CrowdSenSim featured only stateless use cases and was oriented
to model network and energy consumption characteristics rather
than algorithmic ones.

With respect to the original CrowdSenSim [5], we make the
following contributions:

(1) We significantly improve the original platform by implement-
ing a set of crucial features tailored to embrace a larger class
of MCS algorithms and frameworks. In a nutshell, CrowdSen-
Sim 2.0 supports stateful simulations (i.e., where the simula-
tion events are chronologically dependent and the algorithm
operation relies on such dependence), MGRS spatial encod-
ing, a flexible time interval for event generation, and the
integration of a new algorithm to determine user trajecto-
ries.

(2) We optimize the computational performance by means of
a full code refactoring and the introduction of algorithm-
level parallelism, which enables researchers to run several
MCS algorithms simultaneously or several runs of the same
algorithm at the same time.

Furthermore, besides the above contributions directly inherent to
the simulation platform, the paper makes these additional contri-
butions:

o We validate the benefits CrowdSenSim 2.0 brings in terms
of runtime execution and memory utilization.

e We present as use case an analysis of a stateful distributed
data collection algorithm implemented in CrowdSenSim 2.0.

In conclusion, the paper has the following structure: Section 2
outlines the main research efforts in the area, Section 3 describes
the simulator with particular focus on the improvements, Section 4
validates its computational performance in comparison to Crowd-
SenSim, Section 5 describes the distributed data collection algorithm
that we integrated, implementation details of such algorithm, and
its results. Finally, Section 6 concludes the work.

2 RELATED WORKS

After having scanned the state-of-the-art thoroughly, it has become
evident that it does not exist a simulation tool that covers all the
components of MCS. This is because MCS is a general paradigm
which groups highly heterogeneous components. For example, data
collection can be opportunistic or participatory according to the
degree of user involvement. Users might contribute freely to a sens-
ing campaign or can be recruited through specific policies. The
objective of MCS research spans over a number of areas, including
quality and coverage of information over an area of interest, user
recruitment, and incentive mechanisms [3, 17]. Thus, such research
areas typically propose optimization frameworks or algorithms

that are evaluated standalone and often leave apart important com-
ponents that impact on the correct modeling. These components
include realistic user mobility [16] and modeling of urban environ-
ments [1] as well as modeling of the network that transfers sensing
readings from end-users to the cloud where it is typically processed.

For the above reasons, a number of proposed simulation plat-
forms are not suitable to properly evaluate MCS systems because
they typically focus on one component at a time [9]. For example,
in [19] the authors propose to leverage the capabilities of Network
Simulator 3 (NS-3) to simulate ad-hoc scenarios for reporting in-
cidents. NS-3 is a highly detailed simulation tool for networking
purposes and models network protocols down to the granularity
of the single packet across all the layers of the network stack. This
strongly limits scalability, as the level of detail in such simulations
is too high and modeling typical MCS sensing campaigns with thou-
sands of users overall contributing during hours/days timescale
becomes prohibitive. The same applies to similar simulation tools
such as OMNeT++, used in [18]. CupCarbon, proposed in [12], is a
WSN-based simulator in which the researcher can individually de-
ploy both sensors and base stations on realistic urban environments
obtained from OpenStreetMap (OSM)?. Sensors can be mobile and
can have dedicated paths along the roads, which makes it suit-
able for MCS scenarios. However, CupCarbon limits the size of the
scenario, which precludes scalability to thousands of nodes. The
most notable effort in the last years is given by CrowdSenSim [5],
a simulator for MCS scenario capable of supporting a high number
of users (order of hundreds of thousands) and their motion along
the roads of cities imported by OSM without modeling in full the
network stack, yet providing a sufficient level of detail on battery
consumption statistics and number of tasks executed. The focus
of the simulator is heavily energy-driven, implementing a number
of algorithms, both in participatory and opportunistic scenarios,
aiming to reduce the energy consumption per device. Being pri-
marily implemented for energy consumption oriented scenarios,
CrowdSenSim lacks adaptability to many MCS use cases as it does
not support a number of features, such as statefulness, that are
required by the majority of MCS systems.

3 THE CROWDSENSIM 2.0 ARCHITECTURE

This section presents the architecture of CrowdSenSim 2.0 by high-
lighting its novelties over the original CrowdSenSim. In particular,
we detail the architecture of the simulator outlining the role of each
module and we expose the new features and improvements.

3.1 General Architecture

Figure 1 shows the architecture of CrowdSenSim 2.0, which includes
major modifications and added features to the previous version of
CrowdSenSim. Main novel contributions include a stateful approach
that is fundamental for specific classes of MCS applications, support
for a more flexible generation of events in terms of temporal gran-
ularity and other configurable parameters, MGRS spatial encoding,
and generation of highly-precise user trajectories. These features
will be explained in detail throughout the section.

The simulator generates a set of participants moving within
a street network, contributing data through the sensors of their

Zhttps://www.openstreetmap.org/
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Figure 1: Simulator modular architecture, including original
features of CrowdSenSim and novelties of CrowdSenSim 2.0.

mobile devices, and reporting it through the closest cellular base
station or WiFi access point, according to the design of the MCS
campaign. The Event Generator module consists of creating events,
defined as “the arrival of a participant in a given location at a de-
fined time”. To this end, it takes in input the City Layout, the User
Mobility, the Coordinates of the Antennas, and a set of parameters
from the Event Configuration file. After such a macro step has
been performed, the list of events is passed to the Simulator Engine,
which defines the behavior of each participant upon each event.
Both the Simulator Engine and the Event Generator have been
integrally rewritten to make possible the integration of a set of nec-
essary functionalities, which are explained thereafter. Additionally,
significantly more code cleanliness was enforced.

3.2 City Layout

The City Layout module allows researchers to define the urban
street network of a city-wide scenario over which the participants
move. The street network is defined as a set of coordinates where
pedestrians can be located, including latitude, longitude, and alti-
tude.

3.2.1 High-precision street network design. While CrowdSenSim
received as input a .txt file with a list of all coordinates to generate
the city layout, CrowdSenSim 2.0 automatically gets the coordi-
nates by exploiting OSMnx, an open-source Python package to
download and simplify street networks from OSM [2]. Furthermore,
CrowdSenSim 2.0 implements the AOP algorithm [21] to augment
the precision of the graph describing the street network, with a
granularity chosen according to the needs and the objectives of the
MCS campaign under study. Figure 2(a) shows the map of the city
layout and the street network where users can walk. Pedestrian
movement is generated over the points, which correspond to the
set of downloaded coordinates.

3.2.2  MGRS Support. CrowdSenSim 2.0, in addition, supports Mil-
itary Grid Reference System (MGRS) spatial encoding [8], which
allows the developer to design data collection algorithms on top of
such hierarchical spatial encoding. As a matter of fact, the usage of
MGRS is crucial in data collection algorithms for MCS and several
applications are built on top of it [6, 10, 15]. In particular, each
event is generated along with its MGRS coordinates with the finest
possible granularity and such data is then passed to the Simulator
Engine module for processing.

3.3 User Mobility and Event Generation

The User Mobility module defines the initial user placement, at
what time they “spawn” in the urban environment and how they
move. Users are generated using a spatial distribution function and
move according to different possible models. For instance, mobility
can be uniformly or randomly distributed, based on real traces, or
built upon different weights according to the point of interests and
time of the day (e.g., following the distribution of Google Popular
Times>). Each participant has a certain travel time (e.g., 20 min
walk) and its trajectory is generated consequentially as a sequence
of events, defined in § 3.1, equally spaced in time. After an event
is generated, the participant jumps to a location over the urban
network topology reachable in a certain time given its walking
speed, which is generated uniformly within the interval 1 - 1.5m/s.

3.3.1 User Trajectories. User mobility is generated as pedestrian
trajectories with a random start and end point according to the
walking period of each citizen over the street network of the chosen
city. This feature allows highlighting the periods of active contri-
bution of users along their paths according to the data collection
framework (DCF) under analysis. For instance, Figure 2(b) illus-
trates the trajectories of 5 participants walking in Luxembourg
City and contributing with a Deterministic Distributed Framework
(DDF) [4] in which users stop the sensing process after a certain
amount of collected data. The circle represents the starting walking
point and the star the ending point. The green path indicates when
users contribute data, the purple one when they do not sense data.
Each user sends data to the closest cellular base station (BS) or
WiFi access point (AP) according to the chosen communication
technology. For instance, Figure 2(c) shows the concentration of
users connected to each BS in Luxembourg City at a given instance
of time of the simulation runtime.

3.3.2  Event Configuration. In CrowdSenSim 2.0 many options in
the generation of events have been made configurable (see the block
“Event Configuration” in Figure 1). The distribution function for
generating users can be selected when configuring the simulation,
e.g., anormal or uniform distribution, whereas in the old version
users were generated only uniformly. By selecting among various
generation functions, it is now possible to simulate different density
of the users throughout the simulation runtime. The amount of time
each user moves in the urban environment can be configured like
in the original CrowdSenSim. The time interval At between two
events has been made configurable as well, while in CrowdSenSim
was fixed to 60s. This enables to simulate possibly more complex
scenarios, in which the time between updates is not decided at

3https://support.google.com/business/answer/2721884



a) City Layout

(b) User trajectories

(c) Heatmap

Figure 2: City layout, user trajectories and distribution of users connected to BSs in Luxembourg City

design time, but can change through configuration. This makes the
number of supported applications significantly higher.

3.4 Simulator Engine

The simulator engine is written in C++ and, as shown in Figure 1,
it takes in input a list of events, corresponding to the time in which
users perform an action. In turn, each event triggers the sampling
of each sensor as well as the communication module of each device
because the Simulator Engine implements an apposite callback
function. In practice, the Simulator Engine defines the behavior of
each participant by implementing the action performed upon each
event.

3.4.1 Global Statefulness. CrowdSenSim 2.0 executes the events
in absolute chronological order. To make the present CrowdSen-
Sim 2.0 simulator more oriented to the algorithmic side rather
than energy consumption of MCS systems, we implemented the
Simulator Engine in a way in which events are ordered chrono-
logically, whereas, in the previous version, events were executed
per-participant - i.e., all the events of the first participant were
executed before all the events of the second, and so on — making
the implementations of certain algorithms unfeasible. In fact, the
original CrowdSenSim could implement any stateless algorithms
as well as any algorithm requiring only local statefulness, i.e., a
state maintained only internally by each participant and does not
interact with other participants in any case. With the novel version
of the simulator presented in this paper, CrowdSenSim 2.0, we can
implement any algorithm with global statefulness, i.e., the state is
maintained by each participant as well as a central entity, and each
event can be influenced by the past ones. Note that this increases
the expressiveness of the simulator without preventing data collec-
tion algorithms that were implementable in the past version to be
also implemented in CrowdSenSim 2.0.

3.4.2  Algorithm-level Data Collection Parallelism. Comparing the
performance of multiple algorithms (e.g., for data collection) at a
time is often a desirable feature in simulation platforms. Crowd-
SenSim 2.0 makes it possible to run different algorithms within
the same run, simply by defining more than one callback function
relative to each event. More in detail, any time the Simulator Engine

is triggered upon the occurrence of an event, it is possible to specify
more than one function to be called separately. In this way, it is
possible to define a number of algorithms to run at the same time,
that will output their results separately just as if they were separate
runs. Obviously, one can also run the same algorithm several times
in parallel with a different random seed. Such advance boosts the
performance of the simulator significantly, as in a single run several
algorithms can be tested at the same time. We show performance
evaluation of this aspect in § 4. As shown in Figure 1, parameters
such as the algorithms used as well as the number of runs can be
specified in the Simulation Configuration file. The simulator imple-
ments DDF, PCS, and PDA algorithms as in [20], in particular, PDA
has been re-designed in its global stateful version [13] (§ 5).

3.4.3  Participant Awareness. To enable applications and algorithms
that require privacy or fine-grained energy savings mechanisms,
CrowdSenSim 2.0 allows the simulated users to be aware of certain
information detained by the central entity organizing the sensing
campaign. For example, instructions about the amount of yet to be
delivered information in a certain area. Therefore, users can be in:

e Power-save mode, thus eligible to receive such informa-
tion when it is piggybacked on another communication (e.g.,
when they are pushing data).

o Active mode, thus eligible to receive such information upon
each of their events occur.

e Oracle mode, thus aware of such information at any time.

When looking at such division from a privacy perspective, users
in power-save mode are those with limited access to global infor-
mation because they are not trustworthy, whereas users in oracle
mode have higher privileges. Clearly, the additional state may be
implemented in case the simulated scenario requires it.

4 PERFORMANCE EVALUATION

The newly developed CrowdSenSim 2.0 has undergone a complete
code refactoring procedure as detailed in Section 3. Such operation
has been extremely delicate as we needed to assure that every
feature of the original CrowdSenSim was left intact. In other words,
the novel simulator should be retro compatible with the previous
implementation, to achieve results reproducibility regardless of



the simulator version used. In this section, we show that both
CrowdSenSim and CrowdSenSim 2.0 exhibit the same behavior on
common use cases and we highlight the benefits in terms of RAM
utilization that the new version brings.

4.1 Validation of CrowdSenSim 2.0 over
CrowdSenSim

Both the instances of CrowdSenSim and CrowdSenSim 2.0 that we
used throughout the paper have been launched on a virtual machine
using 1 core of the host machine with 4 GB of dedicated RAM and
running Ubuntu 16.04.6 LTS. The host machine is an AMD Ryzen 5
1600 at 3.2 GHz (6 core, 12 thread) with 16 GB RAM and running
Windows 10 Pro 1809.

In order to efficiently validate CrowdSenSim 2.0, we referred
to an energy consumption analysis of the DDF data collection
algorithm originally proposed in [4] that was implemented and
practically evaluated in [20]. DDF is a locally stateful data collec-
tion algorithm in which participants keep on generating data up
to a certain threshold of energy consumption depending on their
battery capacity. For the sake of energy-related analysis, we left
the energy calculation of the original CrowdSenSim untouched. In
detail, we equipped each participant with a mobile device carrying
an accelerometer, a pressure sensor, and a temperature sensor. As
in [5], the sensors generate readings with the same sampling fre-
quency. For all the simulations, we resort to 10 000 participants in
the center of Luxembourg City, which covers an area of 51.73 km?
with a perimeter of 52.5 km and a population of 119 214 inhabitants
as of the end of 2018. The simulation has a duration of 12-hours
(starting at 12:00 PM and ending at 11:59 PM) and paths are gen-
erated with a duration uniformly distributed between 20min and
40min.

We fed both CrowdSenSim and CrowdSenSim 2.0 with the same
set of events, which are sampled per-participant with a frequency
of 60s. We ran extensive simulations and measured the current
drain of the device of each participant in relation to the sensing
and reporting activity, and we plot the results in Figure 3. Devices
use the WiFi technology for communication as in [5]: a number of
WiFi hotspots are deployed in the area of interest, and every time a
participant needs to transmit it sends data through the closest AP in
the map. We observed that both CrowdSenSim and CrowdSenSim
2.0 generate the exact same values, which proves their equivalence
in terms of results output.

In order to further strengthen our claim, we also compared the
transmission consumption between the two simulators. As we did
for the sensors, we did not modify the way in which participants
transmit data. Again the values produced by the two simulators
match perfectly, validating their equivalence.

4.2 Performance Analysis of Runtime
Execution and Memory Utilization

The code refactoring and the parallel processing feature brought
a significant boost in the simulation performance in terms of the
time of execution and memory consumption.

Figure 4 shows the simulator runtime in seconds on top of the
number of algorithms run. Even in one single run, CrowdSenSim
2.0 achieves a lower run time than CrowdSenSim (7s in average
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against 8s). Furthermore, as CrowdSenSim 2.0 allows for multiple
algorithms to run in parallel — or multiple runs of the same algo-
rithm, - the time execution remains almost constant whereas in the
original CrowdSenSim it scales linearly. Indeed, to perform multiple
runs, the original CrowdSenSim needs to be launched several times
sequentially.

Figure 5 shows in boxplot form the performance of CrowdSenSim
and CrowdSenSim 2.0 in terms of RAM consumption. For a fair
comparison, we used only one algorithm at a time. CrowdSenSim
2.0 outperforms CrowdSenSim significantly. This is due to several
code optimizations, such as the use of integers as identifiers instead
of strings.

5 CASE STUDY: A STATEFUL DISTRIBUTED
OPPORTUNISTIC ALGORITHM

In this section, we outline our Asymptotic Opportunistic algorithm
for Joint Fairness and Satisfaction index (AO-JFS) that was initially
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proposed in [13] along with its simplified versions AO-F and AO-S,
both implemented in CrowdsSenSim 2.0 as members of a family
of algorithms called Probabilistic Distributed Algorithms (PDA).
Originally, performance evaluation was conducted using an ad-
hoc simulator. The algorithm has been designed for data collection
control, that is, preventing the whole scenario from generating too
much or excessively less data. Too less data would result in a poor
mapping of a phenomenon on an urban (or rural) environment,
whereas too much data may result in too much noise to get rid of
as well as an unbearable amount of users to reward for data that is
much more than required and, consequently, an unnecessary energy
consumption. We model such scenario in a push-based and totally
anonymous distributed algorithm in which the central entity has no
direct control over the single users - i.e., it cannot specifically query
users about certain resources — neither it has knowledge of where
the users are and how many of them are contributing. Participants
can contribute pushing their data at a defined frequency to the
central entity, which will only reply with a Satisfaction Index (SI), a
number that resembles how much the server is “satisfied” about the
number of observations received in a defined time window about a
resource. Consequentially, participants decide with a probabilistic
distribution whether to contribute or not at the following time slot
on top of the received SI: if the satisfaction is low, they are pushed
to contribute more, if it is high, their contribution is discouraged.

A similar version of such algorithm was implemented in the
original CrowdSenSim [20] and called PDA, although CrowdSenSim
2.0 for its stateful approach would have been required to assess AO-
JES properly. Indeed, AO-JFS requires the central entity to be aware
of all data delivered by the participants at each instant of time in
order to correctly calculate the SI. With the original CrowdSenSim,
each participant executes all its events completely before the events
of another participant can take place. Hence, the chronological
order of the events is violated. Therefore, CrowdSenSim 2.0 with its
stateful approach is necessary for any MCS algorithm that heavily
depends on the chronological sequence of the events. In the rest of
the section, we will outline in detail the behavior of AO-JFS.

5.1 AO-JFS Core Idea

We can model the problem as N different stations (we use the
terms stations, users, and participants interchangeably) that adhere

Transmission Probability (P)
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Figure 6: Base probability plus different booster values

to the MCS campaign and perform observations against a given
phenomenon. Such number N can vary over time due to mobility,
in particular, participants may leave the interested area, whereas
new ones may join it. We assume to split our timeline in time slices
At;, that represent the atomic units during which a station cannot
transmit more than once due to internal clocks. We also assume that
the stations will send observations relative to v certain resources
¥, ..., ¥y periodically. The central entity’s goal is to obtain exactly
Mj observations about ¥; for j € [0, v] within every time window
T;, the length of which is given by |T| = w. We follow the approach
of the sliding window, thus T; = {At;_yy, . . ., At;}, this means that
T; and T;_1 are overlapping by w — 1 time slots. The central entity
displays the performances of the data collection process through
the above-cited SI. Such value is calculated upon each time window

T; and it is defined as SI; j = mM;, where m; ; is the actual number
J

of observations received by the central entity within T; for the
resource ¥;. The aim of the central entity is to obtain a SI equal to
1 for each resource.

We assume that each participant knows the SI values at all times
(i.e., the central entity broadcasts the SI constantly) and, for each
atomic time slot, performs a decision of whether to send or not the
local measurement of the sensor (for each resource). In detail, at the
time At;1, each participant calculates a probability of sending the
measurement relative to the sensor ¥; that is basically the inverse
of the received SI; j, therefore P; j = 1—CSI;_1 ; with CSI;, j being
the Constrained Satisfaction Index:

€ ifSIi’j <€,
CSl;j = { 1-€e ifSIij>1-c¢, (1)
SI; otherwise,

with € being a very small number (in our case 0.001). This forces
the SI to range from a very small number close to 0 to a number
close to 1 for the purpose of probability calculation.

5.2 Boosting Runtime Execution

To prevent contributions to stabilize at a too low or too high SI,
we introduced boosters for the probability calculation. We define
a booster as an exponent E to which we elevate the CSI in the
probability calculation: P; j; = 1 — CSIIE_ L Figure 6 shows the
probability curve for different values of E (the central straight line



is obviously for E = 1). Specifically, we introduce an overall booster
value b; and an individual value k; per sensor.

Suppose the aim is to maintain SI in the range SI € [Mgsy;Usr],
where the bounds are, for example, set as 0.95 and 1.15. Then Vi, j,
if SI; ; > Mgy then b; = dec(bj), whereas if SI; ; < Ly then
bj = inc(b;) with:

1 ifb<1
inc(p) = | b1 MO 2
inc(b) { bl otherwise. @
resth = b-1 ifb > 1,
ec(b) = m otherwise. ®

k is the attempting factor, calculated individually by each station
on top of the received b as

o [log,(n)] ifb; < 1,
kf‘{ n-bj ifb; > 1, )
where 1 > 0 is the number of At; slots elapsed since the last trans-
mission. In the end, the probability is calculated as
_ inck(b)
Pij=1- CSIi—l,j . (5)
Note that the term f"(x) indicates the iterative composition as

fr@) = fo fri).

5.3 Implementation and Testing of AO-JFS

We outline how to integrate the AO-JFS algorithm (§ 5) with Crowd-
SenSim 2.0. AO-JFS is a distributed algorithm where the active part
is given by the participants and the central entity is only “reac-
tive”. In more details, each event generated by the event generator
on the map triggers an action by a participant. Since events are
processed in chronological order, each of them depends on the
sequence of events previously occurred. Thus CrowdSenSim 2.0
can be employed for its analysis. We implemented AO-JFS only in
Active Mode, which means that each participant receives informa-
tion about the status of the SI once every time slot At. Upon the
occurrence of an event, each participant at time slot ¢; (for each
sensor j, with j € [0, v]):

(1) Retrieves the known value of the SI; j and transform it to a
CSI; j for the purpose of the probability calculation using
Equation 1.

(2) Retrieves the known value of the global booster b.

(3) Sets the local attempting factor k using Equation 4.

(4) Calculates the actual probability P; ; to send the observation
for the resource ¥; using Equation 5.

Therefore, events for an AO-JFS simulation are merely the in-
stants in which a participant decides whether to send observations
or not. When all the events for t; occurred, then the values of the
SI are updated before taking into account the next time slot.

Our implementation of AO-JFS is evaluated for 2 hours long
simulations in the center of Luxembourg City. Parallelism is used
to test 50 runs of AO-JFS at the same time, each of them using a
different random seed. At is set to 10s and w = 30, therefore the time
window T is 5min. We set v = 3, in particular, we used the three
sensors mentioned in § 4 as our resources, and fixed the desired
amount of observations as M; = 7500, My = 5000, M3 = 2500.
We generated users using a uniform distribution and set the total
number G as 2500, 5000 and 10000. Figure 7 shows the number of
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Figure 7: Number of active users N over time for 3 different
values of generated users G (G=2500, G=5000, G=10000).

active users N over time. As the distribution is uniform, N tends to
reach a steady state after an initial transient.

Figure 8 shows the results of the simulations. In particular, the
values of the SI for the three sensors ¥;, ¥5, and ¥3 are shown
for each configuration in the form of a Probability Distribution
Function (PDF) in which the data points are the value of the SI
sampled each At. For each sensor, the SI value stabilizes around 1,
which is the goal of AO-JFS. In more details, Figure 8(b) shows the
behavior of the SI at G = 5000, with the number of active users over
time N floating around 1200. This number is in a good balance with
the number of required observations, in fact the SI value for all the
sensors tends to cluster almost regularly around 1. Figure 8(c) shows
the behavior of the SI with G = 10000, with N settling around 2300.
This number is very high in comparison to the number of required
measurements. Therefore the effort of AO-JFS is in limiting the
number of contributions by the participants. This is even more
evident for W3, the resource for which the fewer contributions are
needed, as the respective SI values tend to cluster at a slightly higher
value (i.e., around 1.1). On the other hand, Figure 8(a) shows the ST
for G = 2500 and, consequently, N floating around 500, which is a
low number in comparison to the contribution required. Although
the behavior of the SI is quite similar to the other plots, we can
appreciate a slight difference for ¥3, as its values are more spread.
This is due to b being quite high: as the participants are pushed to
contribute more, the probability curve gets very high for most of
the CSI values in input and causes more likely peaks and troughs
in the contribution over time.

6 CONCLUSIONS

This paper presents CrowdSenSim 2.0%, which extends with major
advances the existing CrowdSenSim platform for simulations of
MCS activities in realistic urban environments. CrowdSenSim 2.0
exhibits two main novel aspects. First, the simulator features a state-
ful approach that enforces all events to be executed in chronological
order with a higher fine-grained temporal resolution. Second, it
features two models to generate the city layouts over realistic street
networks where users move, based on the popular OSM and the

4We make publicly available all the source files and scripts of CrowdSenSim 2.0 under
https://crowdsensim.gforge.uni.lu/download.html.
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Figure 8: PDF of the SI for the three sensors for different values of G.

Military Grid Reference System. In a nutshell, other advances in-
clude extensions of the architectural modules, code refactoring, and
algorithms’ parallel execution that boost performance by making
significantly lower the runtime execution and memory utilization.
This clearly enables the simulation of larger scale scenarios, which
is of paramount importance for research in MCS. We demonstrate
that when feeding CrowdSenSim 2.0 and the original CrowdSenSim
with the same list of events, they perform identically in terms of
mobile device energy consumed for sensing and reporting, thus
making CrowdSenSim 2.0 compatible with previous studies. As an
example of use case, we showcase the performance evaluation of a
distributed opportunistic algorithm for data collection that shows
how the stateful approach is fundamental for specific applications.
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