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Summary

Mobile Crowd Sensing (MCS) has recently gained popularity becoming an appeal-
ing paradigm for sensing and collecting data. It is an emerging area of interest
for researchers as smartphones are becoming ubiquitous devices in use around
the world. The key fact is that mobile devices have not only computing and
communication resources, but they also offer the possibility to exploit a rich set of
sensors for enabling new applications across a large variety of domains.

Considering the latest generation sensors available in modern mobile devices
such as smartphones, wearable and IoT devices, this thesis proposes a taxonomy to
analyze and categorize sensors according to their implementation scope, sampling
activity and purpose.

In MCS systems users contribute data gathered from sensors embedded in mo-
bile devices, including smartphones, tablets and wearable devices. Consequently,
it is required participation and contribution of a large number of users to guarantee
the efficiency of the system. Mobility and intelligence of human participants
guarantee higher coverage and better context awareness, compared to traditional
sensor networks. On the other hand, individuals may be reluctant to share data
and it is needed to introduce incentives. This work analyzes in depth different
approaches of the sensing process and elaborate a novel detailed taxonomy that
provides a clear organization of the state-of-the-art. The layered taxonomy includes
definitions and comprehensive analysis of the available MCS solutions, providing
a hierarchical view. On the first level it classifies the works according to their
application target. On the second level, the taxonomy defines several categories
that capture in detail the properties of MCS systems and analyzes the works in
relation to their application target. Later, a classification overviews MCS systems
defining existing methodologies, architecture design and applications organized
according to the introduced taxonomy.

Several research works focus on sensing applications or incentive mechanisms,
while data collection requires a more detailed investigation. In this thesis a
novel distributed algorithm is proposed for gathering information in cloud-based
mobile crowd sensing systems. The objective is to minimize the cost of sensing
and reporting processes and in the meanwhile to maximize the utility of data
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collection, for instance the quality of contributed information. The performance of
the proposed framework is evaluated analytically considering different metrics,
such as the average number of samples collected per area.

The last part of the thesis consists in the development of a simulator for MCS
systems. The simulator is a discrete-event simulator in which the participants
contribute data to the MCS system opportunistically, that is they collect data
without being an active part in the sampling process. In the simulator, the
participants move in a real city environment (Luxembourg City center was chosen
for the purpose) with pedestrian mobility and generate data by means of latest
generation sensors commonly available in today smartphones.
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Chapter 1

Introduction

1.1 Motivation

Nowadays smartphones are ubiquitous mobile devices, embedded with a set of
powerful sensors that could be employed for many applications. In the last years,
number of smartphones in use worldwide broke the 1 billion mark [1] and the
total shipments showed a strong growth, for instance in 2014 up 28.4 percent from
2013 [2]. In 2015 the sales of smartphones to end users reached 1.4 billion units, up
9.8 percent from 2014 [3] and according to a new mobile phone forecast from the
International Data Corporation (IDC) Worldwide Quarterly Mobile Phone Tracker,
smartphone shipments are expected to grow 7.4 percent in 2016. Furthermore, IDC
predicts that smartphones sales will continue to grow, even if an ever decreasing
rate and the worldwide shipment volumes are forecast to reach 1.9 billion units
annually by 2019 [4].

Sensing is the enabling factor for developing applications across a large va-
riety of domains, such as home care, health care, social networks, public safety,
environmental monitoring and intelligent transportation systems. Fixed sensors
provide information for specific areas of interest (e.g., video surveillance) and
have problems in management and maintenance. On the contrary, mobile devices
provide unlimited possibilities. First, they have a rich set of sensors, considering
both the ones that are built-in and the possibility to connect others to the smart-
phone. Second, users move by themselves, have interest in the maintenance of
mobile devices and recharge them. Consequently, smartphones are essential for
developing applications to help and change life of the people (e.g., in public safety
for car accidents, crime detection or natural disasters). For this reason, the analysis
will focus on specialized sensors such as ambient light sensor, accelerometer,
digital compass, gyroscope, GPS, proximity sensor and general purpose sensors
like microphone and camera.
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1 – Introduction

Taking into account that smartphones are not only personal sensing platforms,
but also computing and communication devices, the concept of Mobile Crowd
Sensing (MCS) will be introduced. It is a new sensing paradigm in which mobile
users can easily and efficiently collect and share sensing information, in order
to enable numerous distributed and large scale applications. MCS can greatly
improve citizens everyday life and provide new perspectives to urban societies.
MCS is an essential solution for building smart cities of the future, which aim at
using ICT solutions to improve management of everyday life of their citizens [5,
6]. Several MCS-based solutions have already been proposed in this sense. For
instance, the accelerometer and the GPS may be exploited for road maintenance [7]
or the GPS and the camera for checking free spots in a car park [8, 9]. MCS
is also referred as people- or human-centric sensing paradigm because human
involvement is the most important feature in the process. Indeed, system devices
are no longer owned and managed by a single authority but belong to people with
different interests who live and move in several contexts. Consequently, sensing
data is more related to interactions between people and their surroundings rather
than some physical phenomena of interest to be monitored. Furthermore, system
devices have much more powerful resources and maintenance than sensor nodes
and people typically charge them on daily basis. The involvement of people, who
are not just passive users but also active data contributors, brings not only huge
advantages but also points out many problems, which will be analyzed and some
possible solutions will be proposed.

Energy efficiency is another fundamental aspect to take into account, because
the primary usage of smartphones should be reserved for the users’ regular
activities. For this reason, it is fundamental that sensing applications would not
introduce significant energy consumption. Contributing data should not consume
too much battery and prevent the users from accessing their usual services, such
as instant messaging. For instance, the Global Positiong System (GPS) consumes
a significant amount of energy, much higher than other sensors, such as the
accelerometer or the gyroscope. Consequently, it is fundamental to make use of
these sensors efficiently. One of the most challenging problem to overcome is the
position of the device, indeed sensors will be placed in a way most convenient to
the user (e.g., in a pocket) and not necessarily in a manner most conductive to high
fidelity data gathering for an application. In these cases, sensing could be only a
waste of energy, so it is necessary to have an idea of the environmental context of
the device. The aim is to maximize the utility of the sensors’ usage and minimize
the waste and the cost, in terms of energy and data overhead.
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1 – Introduction

1.2 Contributions
The proposal of this thesis can be summarized as follows: it analyzes sensing
elements, MCS systems and architectures, introduces a novel hierarchical taxonomy
forMCS systems, develops a distributed framework for data collection and presents
a discrete-event simulator in a realistic city environment.

To easy and simplify the understanding of MCS, this thesis elaborates a novel
taxonomy that provides a clear organization of the state-of-the-art. The proposed
taxonomy, which is layered, gives a hierarchical view and exploits as the key
concept to classify existing studies the purpose of the application. Furthermore,
it defines several categories to capture in detail properties of MCS systems and
analyze works in relation to their application target.

A new framework is introduced and the process of data collection is analyzed
from a new point of view, defining an algorithm to maximize the utility of data
collection inMCS and tominimize the costs. Both the smartphone and the collector
side are considered. The aim is to decide when to sample and report the data
generated by smartphone sensors, taking into account different parameters from
both sides. In other words, the algorithm introduces a matching process for taking
the decision of sampling and reporting. Performance are evaluated analytically
taking into account different metrics.

The last objective of the thesis is to assess the efficiency of the framework taking
into account a large number of participants contributing data in a real city. For the
purpose, a custom simulator called CrowdSenSim is developed. Crowdsensim is a
discrete-event simulator that supports pedestrian mobility. The participants move
in a realistic city environment and communicate with base stations, which are in
the real position given by latitude and longitude.

1.3 Thesis Organization
This thesis is organized as follows:

• Chapter 2 provides an overview of smartphone sensors, from the general
purpose to the more specific, defining which ones are always on and con-
sequently more conservative and the others that consume more energy. It
presents a distinction between embedded and non-embedded sensors: the
first, which can be found more or less in each device, are limited and well-
known, while the second, which can be connected to the device via bluetooth,
are several and more oriented to the single user choice, consequently to
commerce. Furthermore, the chapter introduces the concept of context as
a central role in our dissertation, taking into account smartphone position
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1 – Introduction

(e.g., pocket), user mobility and utilization of the device. The chapter ends
presenting some applications, which exploit the interaction between sensors.

• Chapter 3 describes a new sensing paradigm, which is called Mobile Crowd
Sensing and highlights its importance for developing more and more useful
and important application in everyday life. It presents a little survey, taking
into account the main features of this new paradigm and the differences of
approaches in presented models and applications. For instance, it focuses on
the differences between a participatory or an opportunistic approach, on the
assigned tasks, or also on which incentives can be used to make the users
collaborative as volunteers.

• Chapter 4 presents a new energy-efficient framework for data collection
optimization in mobile crowd sensing systems. The aim is to devise a
framework that minimizes energy-consumption and maximize utility of
collected data. To achieve this goal, it is presented a framework that takes
into account several parameters, including data collection utility, smartphone
sensing potential, environmental context and battery level. This section also
discusses possible enhancements of the current model.

• Chapter 5 evaluates the performance of the proposed algorithm analytically.
It is explained the configuration of the tools used and some metrics are
presented to simulate different situation in details. The results are discussed
and analyzed to understand the achievements of the model in the presented
scenario.

• Chapter 6 introduces CrowdSenSim, a new simulator that is developed
in a realistic city environment. It relies on simulating the movement of
pedestrians who sense and report data in a real city. Starting from the real
position of LTE base stations andWiFi hotspots in the city of Luxembourg and
exploiting some models of users’ mobility all around the city, the objective of
the simulator consists in measuring the costs of the devices experience and
determining the amount of contributed data.

• Chapter 7 discusses about the conclusion and presents some ideas about
future works.
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Chapter 2

Sensing Elements

Sensing is the enabling factor for developing applications across a large variety of
domain, such as home care, health care, social networks, safety, noise mapping,
environmental monitoring and intelligent transportation systems. For this reason,
it is fundamental to analyze sensors, which are at the heart of any sensing systems,
including MCS systems. Unlike for the traditional case with fixed sensors, in
MCS systems the devices are no longer owned and managed by a single authority.
Participants have usually different interests and they can decide independently if
contributingornot in theprocess. As a consequence, sensing is aprocess concerning
the contextual activities that happen in the surrounding of the participants. In
traditional fixed sensor systems, sensing focus instead on a particular phenomena
of interest that needs to be monitored. In other words, people are no longer just
passive data users, but also active data contributors. Furthermore, due to the
fact that users take care of their smartphones, system devices have much more
powerful resources and maintenance than typical sensor nodes and can be charged
regularly. Accelerometer, gyroscope, GPS, microphone and camera are just a few
examples of typical built-in sensors in modern smartphones, wearables and IoT
devices. Sensors are responsible of gathering data, which is often delivered to a
collector or used for local application. Analyzing these sensing elements there
are some challenges to face with. First of all, relying on a people-powered mobile
architecture means that the sensing devices characteristics are heterogeneous,
because different sensor types are embedded in an infinite number of devices
that have several storage, processing and communication capabilities. Moreover,
sensors will be placed in a way most convenient to the user (e.g., in a pocket) and
not necessarily in a manner most conductive to high fidelity data gathering for an
application. This section first illustrates a taxonomy on sensors and then analyzes
and classifies sensing elements according to the proposed taxonomy.
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2 – Sensing Elements

2.1 Taxonomy on Sensing Elements

Sensing elements can be broadly categorized into three categories according to
their implementation scope, continuity of sensing activity and type of sensing
information. Fig. 2.1 illustrates this classification. Implementation category distin-
guishes between sensors embedded or not in the mobile devices. The sampling
activity differentiates between sensors that work continuously because they are
necessary for basic operations of the device and those that require user intervention
to become active. Finally, the purpose category investigates the applications the
sensors are designed for. This classification unveils a number of properties. For
example, passive sensors perform sensing continuously and are not manually
activated by the user such as the camera. For this reason, they are typically
embedded in the mobile devices and they operate consuming a small amount of
energy. Having such deep understanding helps devising applications using sensor
resources properly, such as exploiting a passive sensor to switch on or off another
one. For instance, turning off the screen using the proximity sensor helps saving
battery lifetime as the screen is a major cause of energy consumption [10]. Turning
off the ambient light sensor and the GPS when the user is not moving or indoor,
allows to obtain additional power savings.

SENSING ELEMENTS

IMPLEMENTATION

EMBEDDED

NON-EMBEDDED

SAMPLING ACTIVITY

ACTIVE

Continuous
On-Demand

PASSIVE

PURPOSE

ORIENTATION AND
INERTIAL

COMMUNICATION

LOCALIZATION

WEATHER

GENERAL PURPOSE

SPECIALIZED

Figure 2.1: Taxonomy on mobile devices sensors
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2 – Sensing Elements

Implementation Scope
The vast majority of available sensors are embedded in mobile devices. Neverthe-
less, non-embedded sensing elements exist. Indeed, they are designed for very
specific purposes and vendors have no interest in large scale production. For
instance, the gluten sensor comes as a standalone device and it is designed to
work in couple with smartphones, which are responsible to receive, store and
process food records of gluten detection [11]. These tasks can only be accomplished
using wireless connection. Therefore it becomes necessary to distinguish between
sensors that are embedded in the devices and sensors that are standalone devices.

Embedded Sensors

Integrating sensors intomobile devices is nowadays commonpractice. If embedded,
sensors do not require to be paired with other devices for data delivery. Sensors are
essential for ordinary operations of smartphones (e.g., the microphone for phone
calls), for social purposes (e.g., the camera to take pictures and record videos) and
user applications (e.g., GPS for navigation systems). Typically, smartphones are
equipped with a higher number of embedded sensors than wearable devices.

Non Embedded Sensors

These sensors are typically standalone devices and are designed to be paired
with a smartphone for data transmission. Indeed, they are very small devices
with limited storage capabilities. Communications rely on wireless technologies
like Bluetooth or Near Field Communications (NFC). Nevertheless, particular
sensors such as the GasMobile hardware architecture can be wired connected with
smartphones through USBs [12]. Whereas embedded sensors are used only for
popular applications, the design of non-embedded sensor is very specific and
which either single individuals or the entire community can profit. To illustrate,
only the celiac community can take advantage of the gluten sensor [11] while
an entire city can benefit from the fine dust sensors [13] or nuclear radiation
monitoring [14].

Sampling Activity
Nowadays a growing number of application people use on daily basis require
sensors to operate. Moreover, mobile devices themselves use sensors for basic
functionalities. For example, auto-adjusting the brightness of the screen require
the ambient light sensor being active, understanding the orientation of the device
can be possible only having accelerometer and gyroscope working continuously.
On the other hand, a number of sensors can be switched on and off manually by

7



2 – Sensing Elements

user intervention: taking a picture or recording a video requires the camera being
active only for a while. It should be noted that some always-on sensors can be
used temporarily by user application such as games.

The second classification allows to categorize sensors on the basis of their
continuity in sampling activity.

Passive Sensors

Passive sensors are required to accomplish mobile devices basic functionalities,
such as detection of rotation and acceleration. As a consequence, they are typically
embedded sensors, they run continuously and consume a very little amount of
energy. For such a reason, it has become convenient for a number of applications to
make use of these sensors in other context. For instance, the accelerometer can be
employed for user-activity recognition [15, 16] and to monitor the driving style [17]
if used in pair with the gyroscope. Furthermore, it is possible to use passive
sensors for context-awareness detection, such sensing user surroundings [18].

Active Sensors

Active sensor require user intervention to become active and typically serve more
complex application functionalities than passive sensors. As a consequence, they
consume much more energy and for this reason they are typically disabled for
power savings. The GPS, the camera and the microphone are representative
examples. These sensors can be attributed to the subcategory continuous as, once
they are active, they provide readings at a given sampling rate until the user
switch them off. For instance, the GPS when it is used in cooperation with a
navigation system, the camera and the microphone for recording videos and
audio respectively. Moreover, they can be attributed to the subcategory on-demand
because when they provide one reading only, after being active. Typical examples
are the camera for taking picture, the microphone to reveal the level of noise in dB
and the GPS to sense the exact position of a mobile device while sensing something
(e.g., petrol prices in a gas station located anywhere [19]).

Purpose
Classifying sensors according to their purpose is fundamental to understand in
which applications they can serve. Very often applications require multi-sensing
capabilities. To illustrate, DietSense [20] captures pictures of food and reports
thanks to the GPS location and timestamp references of the sample. In addition,
the microphone detects in which environment the sample was collected. The GPS
can be attributed to a localization category: it allows to detect the position of the

8



2 – Sensing Elements

device. The same functionality can be achieved using WiFi. This is especially
true for indoor environments, where the GPS is not working. The camera and
the microphone are general purpose sensors. Although they provide a specific
functionality, image/video and audio recording respectively, the objective while
performing sensing can vary. Recalling the DietSense and the GasMobile examples,
images are employed for both healthcare and price detection. In contrast, specialized
sensors allows gathering information useful for one purpose only. The gluten
belongs to this category.

Orientation and Inertial

Inertial sensors measure acceleration and rotation, expressed as vector values.
These sensors are the accelerometer and the gyroscope. Sometimes, also the mag-
netometer, which measures magnetic fields, is considered to be an inertial sensors.
Magnetometer, accelerometer and gyroscope form the Inertial Measurement Unit
(IMU). To illustrate, all these sensors need to be aligned for obtaining accurate 3D
orientation estimates of the device [21].

Communication-related

In first place, WiFi, Bluetooth and NFC enable connectivity of mobile devices to
the Internet or with other mobile devices including non-embedded sensors. These
sensors can also be employed for locating users nearby [22] and acquiring device
location [8].

Weather

Sensors belonging to this category allow to obtain readings useful for environmental
monitoring like temperature, pressure and humidity. Among the three types of
sensors, the temperature one is the most common implemented in mobile devices.

Localization

GPS,WiFi and Cellular Tower Signal (CTS) are employed to localize mobile devices.
The most accurate sensor is the GPS, which consumes a considerable amount of
energy when active [23, 10]. Readings obtained fromWiFi and CTS are less precise
in comparison with GPS [23].

General Purpose

This category groups sensors that can serve for multiple purposes or that are
engaged in typical phone operations and can also be employed for sensing. To
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2 – Sensing Elements

illustrate, the microphone is essential for phone calls. In addition, it helps in
monitoring noise [24] and in context detection [20]. Other sensors belonging to
this category are the camera, the ambient light and the proximity sensors.

Specialized

Specialized sensors are application-oriented and are used only in a specific field of
potential function, for instance air pollution, allergy food detection or radiation
monitoring. Typically specialized sensors are non-embedded. Being targeted to a
particular application, the market demand is limited and therefore vendors have
little interest in implementing them for large distribution. Moreover, if embedded
they have a potential to drain the battery very quickly. Examples of specialized
sensors are the gluten sensor [11], the fine dust sensor [13] and the radiation
sensor [14].

2.2 Classification
This section groups and classifies the most common and available on the market
mobile devices sensors. Table 2.1 illustrates and summarizes their properties
according to the taxonomy illustrated in Subsection 2.1.

Accelerometer
The accelerometer measures the non-gravitational acceleration of the device. It
is a dynamic and inertial sensor for motion detection, which defines the position
of the device in the space through x, y and z axis. Being fundamental for proper
operation of the devices, the accelerometer is very cheap in terms of energy
consumption and embedded in all mobile devices, including IoT devices. It is a
passive sensor which generates samples at low frequencies, typically in the order
of 40 Hz. In smartphones, the accelerometer makes possible screen auto-rotation
and trigger context-based operations, i.e. turning off the GPS when the user
is not moving. Moreover, accelerometers contain highly detailed information
about phone movement, enabling fine-grained distinction of different activity or
transportation modalities. Activity recognition such as detection of movement
patterns (e.g. walking/running [15, 25, 26]) or actions (e.g. driving, riding a car or
sitting [27, 28, 29]) is a very important feature that the accelerometers enable. For
instance, it can be employed for health care to detect a fall and user reaction after a
fall [16, 30, 31, 32] and to distinguish transportation modes [33, 34, 35, 36, 37, 38].

Accelerometers measure the proper acceleration, which is the physical accelera-
tion experienced by an object or a person, thus the acceleration relative to a free-fall,
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2 – Sensing Elements

or inertial, observer who is temporarily not moving relative to the object being
measured. Such accelerations are measured in terms of g-force. Accelerometer
typically has different basic specifications, but the most important are:

• Sensitivity: it is the ratio of an electrical output to the mechanical input. It is
usually expressed in terms of volts per unit of acceleration under the specified
conditions. It is an indicator of the amount of change in output signal for
a given change in acceleration. An accelerometer that can be defined as
sensitive will be more precise and accurate.

• Frequency response: is the output signal over a range of frequencies where
the sensor should be operating. It is specified with respect to a reference
frequency that is where the sensitivity is specified.

• Dynamic range: this is the range between the smallest acceleration detectable
by our sensor to the biggest. Measures that do not fall in this range are
clipped.

• Bandwidth: it is usually measured in Hertz and indicates the limit of the
near-unity frequency response of the sensor, or how often a reliable reading
can be obtained.

In order to understand the inertial principle of the accelerometer, it is useful to
image a box in shape of a cube with walls that are pressure sensitive and a ball
inside of it. If this box is considered in a place with no gravitational fields, the ball
will float in the middle of the box, but as soon as the box suddenly moves to one
direction, the ball will hit the wall to the opposite direction. The measurement
of the pressure force gives the value to output. The accelerometer will actually
detect a force that is directed in the opposite direction from the acceleration vector
and this is why it is called inertial force. In real life, the gravity force must be
subtracted before anymeasurement because the ball will fall on the ground because
of the g-force. An accelerometer at rest relative to Earth surface will indicate
approximately 1 g upwards, so this must be subtracted and corrections should be
made because of the effects caused by Earth rotation relative to the inertial frame.
However, the gravity force can be taken as an advantage of detecting the rotation
of a device. For instance, when a user rotates his smartphone, the content will
switch between portrait and landscape.

Most smartphones typically make use of Micro-Electro-Mechanical Sensors
(MEMS) and the three-axis model; they trade large value range for high precision,
for instance iPhone4 has range ±2g and precision 0.018g.

In theory, the displacement can be calculated as:

d(t) � d0 + v0 · t +
" T

0
a(t) dt dτ,
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where d(t) displacement, d0 initial displacement, v0 initial velocity and a(t) acceler-
ation. This equation is a continuous function, but in real world the a(t) is discrete
due to sampling. To calculate the displacement according to discrete values:∫ t(n)

t(0)
a(t) dt �

n∑
i�1

((a(i − 1) + a(i))
2 · ∆t ,

where a(i) is the i-th sample and ∆t time increment. Velocity and displacement
can be calculated as the following:

v(i) � v(i − 1) +
a(i − 1) + a(i)

2 · ∆t ,

d(i) � d(i − 1) +
v(i − 1) + v(i)

2 · ∆t .

The accelerometer returns a 3-axis value, so a(t) can be calculated as:

a(t) � ~ax + ~ay + ~az ,

where they are vectors.
While the accelerometer is accurate at measuring the displacement of an object,

it is not so good to measure the spin movement of the device. Consequently, a
gyroscope is often needed and it is defined a “keeper of direction”.

Gyroscope
The gyroscope determines the orientation of a device, measuring the rotation rate
around an axis. Similarly to the accelerometer, the gyroscope is an embedded
and passive sensor (see Table 2.1). When the device is in horizontal position,
the gyroscope provides readings whose value is equal to zero. When used in
combination with the accelerometer, the gyroscope helps to detect and recognize
user movements. In addition, it can be employed for recognition of physical
activity [39], driving style [17] or providing a car navigation system [40]. Another
very important application based on gyroscope readings is speech recognition [41].

Gyroscope is based on the fundamental principle of the conservation of angular
momentum: in any system of particles, the total angular momentum of the system
relative to any point fixed in space remains constant, provided no external forces
act on the system. It detects the current orientation of the device, or changes in
the orientation; more precisely, the orientation can be computed from the angular
rate that is detected by the gyroscope, expressed in rad/s on three axis. Classic
gyroscopes are usually composed of a spinning wheel on an axle that is free to
assume any orientation. Based on the principle of angular momentum the wheel
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resists to changes in orientation, thereby allowing to measure values. Actually,
smartphones use MEMS gyroscope sensor to detect the rotation of the device
exploiting another physical phenomenon, the Coriolis force. It is a fictitious force
that appears to act on an object while viewing it from a rotating reference frame.

In a mobile device, the gyroscope is a small sensor that is calibrated to give a
reading of zero when the smartphone is kept on a plane horizontal surface and any
change in angular rotation velocity is measured. It is a very sensitive device and
it is good at detecting the spin movement. The gyroscope measures the angular
velocity, which can be calculated as:

g(t) � ~gx + ~gy + ~gz ,

where ~gx , ~gy and ~gz are the values along the three dimensions.
Accelerometer and gyroscope are able to detect the direction of a movement,

but that is a relative direction depending on the coordinates the smartphone uses.
Thus, a magnetometer is needed to get an absolute direction.

Magnetometer
The magnetometer measures the strength and the direction of a magnetic field. In
case a magnetometer only determines the direction of a magnetic field, it is called
digital compass. Keeping the device parallel to the ground, the magnetometer
provides a reference on the direction of the movement with respect to the Earth’s
magnetic field. The magnetic field is normally dominated by the earth magnetic
field, which varies over the earth it magnitude (25-60 µT), inclination angle (0 at
the equator, 90 degrees at the magnetic poles) and declination angle (-10 to +10 at
most places on earth). However, when used in combination with accelerometer
and gyroscope, it detects the absolute direction of the device, which is obtained
regardless the position of the device. Proper calibration of the sensor is essential.
Indeed, the magnetometer is sensitive to any magnetic field in the vicinity as well
as hard and soft iron [21]. For indoor environments where it is not possible to
obtain GPS readings, localization often relies on the magnetometer [42, 43].

Accelerometer, gyroscope and magnetometer are also called IMU (Inertial
Measurement Unit).

Pressure Sensor
The number of mobile devices embedding the pressure sensor is continuously
increasing. The pressure sensor can indeed be employed to measure air pressure to
predict weather changes [44]. Crowd sensing methodologies for weather forecasts
are highly developing all around the world. On one hand, predictions are faster
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than classic forecasts because smartphones act as mini weather stations located
almost everywhere. On the other hand, the pressure sensor does not affect too
much battery lifetime [45].

Measuring the pressure is also useful to determine the altitude. Compared to
the GPS, the pressure sensor provides more accurate estimates of altitude [46] and
can locate devices faster [47]. Since the GPS is not working in indoor environments,
it is also a valid alternative for indoor navigation, which is an area with massive
potential growth in retail and travel applications [43]. For instance, being accurate
in detecting changes of altitude up to onemeter, it is possible to recognize on which
floor a user is inside a building [48, 49, 50]. Furthermore, in cooperation with the
accelerometer and the gyroscope, the pressure sensor can recognize activities such
as taking elevators, walking on stairs and changing a floor [51, 52].

Temperature Sensor
Temperature sensor indicates both the ambient and battery thermometer. Ambient
temperature sensor is not one of the most popular built-in sensors in a smartphone
and only few of them embed this sensor (e.g., Samsung galaxy s4 is one of the
first and few smartphones to contain a thermometer). On the other hand, battery
temperature sensor is always embedded in a mobile device. For this reason,
it has been discovered that it is possible to measure the ambient temperature
obtaining readings from the battery of the devices [53]. It exists a direct relationship
exists between internal and external measures [54, 45]. Aggregating daily battery
temperature readings to city level revealed a strong correlation with historic
outdoor air temperature. With a mathematical transformation, the average battery
temperature across a group of phones gives the outdoor air temperature. Although
being uncommon, it also exist on the market standalone temperature-sensing
modules that are Bluetooth-enabled and are designed to operate with smartphones.
For this reason, Table 2.1 denotes the temperature sensor as an embedded sensor.

Humidity Sensor
The humidity sensor measures the air humidity, which is expressed in percentage
and is computed using the absolute humidity measure relative to the maximum
temperature registered for that measure. It is an embedded sensor that generates
sample continuously at very low frequencies (1 Hz). In combination with other
sensors, such as the temperature and pressure sensors, the humidity sensor has a
potential to monitor climate conditions of relatively small environments, including
working spaces like offices and laboratories and rooms [54]. Furthermore, the
incoming data from millions of smartphones could potentially be utilized to create
a real-world weather mapping and complex historical charts. For instance, british
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app developerOpenSignal has created a system that allowsmultiplemobile devices
to provide real-time, location-specific weather reports [53].

Bluetooth
Bluetooth is a short-range wireless technology enabling low data rate communi-
cations between nearby devices. It uses short wavelengths UHF radio waves in
the ISM ban from 2.4 to 2.485 GHz. Being designed for low-power consumption
applications, this technology is nowadays widely adopted by the vast majority of
mobile and IoT devices.

Inmobile crowd sensing, Bluetooth is awellmatching solution to estimate crowd
density nearby, which is especially useful for collaborative sensing paradigm [55,
56]. In addition, Bluetooth is the key technology enabling connectivity between
smartphones and non-embedded sensors. Note that using Bluetooth for importing
data collected by a sensor that is not embedded in a smartphone permits the users
to have a more accurate sensor and choose it by themselves. Moreover, it is also
energy efficient in a context-aware system because the user does not have a battery
consumption of the smartphone in collecting data as the case in which the sensor
is built-in.

WiFi
WiFi is a wireless communication technology practically implemented in the vast
majority of the mobile devices. Unlike Bluetooth, it achieves higher bit rates and
higher transmission ranges, at the cost of higher energy consumption. Nonetheless,
due to the limited coverage, existing WiFi infrastructure only provide intermittent
connectivity for users with high mobility. Each time a user leaves the current
network coverage, WiFi clients must actively discover new WiFi access points
(APs) and this activity wastes precious energy because of excessive listening and
scanning operations of WiFi network interface cards (NICs). Several approaches
have been proposed to solve and optimise the aforementioned issue. A first
solution utilizes a secondary low-power radio that communicates with peer radios
on WiFi APs to find connectivity opportunities or reduce the energy consumption
of data transfers. Unfortunately, this approach requires significant modifications to
existing network infrastructures. A second solution predicts the availability ofWiFi
based on context informations. Cellular cell-tower information or together with
Bluetooth contact-patterns have been used to improve WiFi prediction accuracy.
However, such a context-aware approach requires extensive training based on
historical information and hence it is not feasible in unknown environments.

WiFi can also be employed for localization-based service, through the WiFi
positioning system (WPS). Despite GPS, it guarantees lower energy consumption
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and can be used for indoor localization [57]. However, WPS is not as accurate as
GPS(up to 30 to 200 meters, depending on the service provider), as the minimum
level of precision is nearly 20 m. Using a MCS-based approach, it becomes possible
to detect presence of WiFi Access Points to build coverage maps [58].

NFC
Near Field Communication (NFC) [59] is a technology enabling smartphones
and wearable devices to establish wireless communication each other when they
are in close proximity(approximately 10 cm). It allows a NFC sensor chip to be
recognized by simply tapping it with a NFC-enabled phone or holding the device
in close proximity to it. To this date, NFC technology is more common in wearable
devices than in smartphones. NFC finds application in healthcare domain [60]
and for mobile payments [61]. Even if these sensors are not yet in widespread use
because of the limited number of devices embedded with NFC sensors and the
relative complexity and expense of producing materials with embedded chips,
NFC is a growing technology platform that can be used to a variety of scenarios.

GPS
The Global Positioning System (GPS) provides location and time information. It
is a space-based satellite navigation system as at least four satellites are required
to compute the location in term of three dimensions, latitude, longitude and
altitude. Although it does not work for indoor environments (research works
show that a GPS signal is available only 4.5 percent of the time during a typical
users’ day), the GPS was the key enabler for location based services [62]. The
GPS is very energy consuming and it is very important to switch it off when it is
not necessary, indeed it can cause the battery to completely drain within a few
hours. Consequently, location-based applications still cannot assume continuous
and ubiquitous location access in their design because of the high energy expense
of using the GPS. For such a reason, several energy-efficient techniques were
investigated [63], including adaptive sampling rate methods [64]. Furthermore,
often an alternative location-based service may be exploited, as WiFi or cellular
tower signal, because sometimes it is better to have a less accurate position but
saving a great amount of energy.

Cellular Tower Signal
Also calledGlobal System forMobileCommunicationsPositioningSystem (GSMPS),
the cell tower signal is typically employed for localizing users. Although it can not
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provide readings with high accuracy like GPS (the typical range spans from 70 to
200 m in urban areas), the cell tower signal is more energy efficient than GPS [65].

Ambient Light Sensor
The ambient light sensor detects the light intensity of the environment that
corresponds to an approximation of the eye response to the light intensity. Being
an embedded and passive sensor, the ambient light sensor is primary used
for adjusting the screen brightness and the keyboard light. By all means, this
was the first attempt to provide energy efficient solutions for smartphones as
the screen is the major cause of battery drain. Thus, it enables easy-to-view
displays that are optimized to the environment, in an effort to make the device
aware of its surroundings. However, the ambient light sensor can serve many
other applications. For instance, it can determine whether an user is indoor or
outdoor [18] and consequently switch on or off some energy consuming sensors
like the GPS. This is especially useful to design context-aware solutions that permit
to switch on or off a sensor based on the position of the smartphone, e.g. in
the pocket. When used in pair with the accelerometer, the ambient light sensor
becomes the key enabler of modern indoor navigation systems [66, 67].

Human eye’s sensitivity to light is described by the photopic curve, also called
the CIE curve, which shows the sensitivity for different values of wavelength.
A normalized version of this sensitivity curve is used to convert an incident
optical power density (specified in µW/cm2) to sensitivity units for the human eye
(specified in lux, where lux is the SI unit of illuminance and luminous emittance,
measuring flux per unit area) [68]. Today most light sensors use two or more
different types of photodiodes, each sensitive to a different portion of the light
spectrum. By combining these photodiode outputs mathematically, each with
a suitably adjusted gain, the sensor can be made to output a fairly accurate
measurement of ambient brightness for the light sources commonly available.
Typical values in real life are from 0.1 lux outdoor at night and 100.000 lux in
sunlight. Human eye’s perception of brightness is logarithmic; a lux level must
increase almost ten times before the eye perceives it to be twice as bright. Thus, a
similar transfer function relates the ideal percentage of display backlight brightness
to relative ambient lux.

Proximity Sensor
The proximity sensor detects the presence of nearby objects and estimates the
distance between the user and the mobile device without any physical contacts.
The proximity sensor enables two main features. First, it helps reducing the power
consumption due to the screen by turning off the backlight. Second, it disables the

17



2 – Sensing Elements

touch screen to avoid undesired taps, for instance when the smartphone is brought
next to your ear this prevents to end a call accidentally. The proximity sensor
emits an infrared light which reflects off an object back to a photodiode; thus, if
there is no object, there is no reflection and no signal back on the photodiode. By
the way, the infrared reflectivity of objects differs and the color has an important
effect on the amount of signal reflected. It assumes that an object is close if the
lights coming back are over a certain amount; if any object is present, then the
touch events can be assumed to be accidental and ignored. In most mobile devices
the proximity is evaluated like a boolean value, “near” or “far”. A threshold is
compared to a lux value, if the value is over the threshold it is near, otherwise far.

The proximity sensor is embedded in mobile devices and among various
technologies, themost common implemented is the optical proximity detection [69].
It consists in transmitting infrared signal and measuring the amount of lights
received back because of reflection. For this reason, Table 2.1 denotes the activity
of the proximity sensor as passive. Furthermore, this sensor may be fundamental
in a context-based sensing recognition(e.g., for determining if the screen of a
smartphone on a table is up or down or if the device is in a pocket).

Microphone
The microphone is the most popular and well-known embedded sensor in smart-
phones as it is fundamental for calls, the primary functions of telephony. When
used for sensing, the microphone is a precious source of information. For example,
the majority of places and sites have specific sound patterns. As a result, this
information becomes fundamental to understand users’ context in everyday life [70,
71]. Moreover, also activities such as conversation, music, traffic noise and ambient
sound have a unique fingerprint that can be categorized [72, 73, 74]. Having this
information, it becomes possible to instantiate users’ profiles that change according
to the context. To illustrate, adjust the volume of the smartphone according to
the environment noise. Furthermore, when microphone is used as a sensor for
environmental noise, it is fundamental to decide an efficient sampling period. For
example, the period can be set according to the remaining battery charge of the
users and the needs of the collector about quality of signal and sensed data. This
sensor is strictly related to the concept of privacy, indeed it can be exploited only
under the explicit permission of the user, who has a primary and conscious role in
the sensing process.

Camera
Similarly to the microphone, the camera is certainly one of the most popular
embedded sensors in smartphones. Its typical use consists in capturing images
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and recording videos. In phone sensing-based applications, the camera is very
popular and finds application in a broad range of domains such as healthcare [75,
20], intelligent transportation systems [76, 7, 77] and environmental monitoring [24,
24]. However, it should be noted that image processing is typically computational
heavy if performed locally on smartphones. Other promising use cases are indoor
navigation [78, 79] and augmented reality-based translation systems [80].

In contrast to other smartphone sensors, but similarly to the microphone, it can
be exploited only under the explicit permission of the user. Moreover, it is needed
an active action of the users, who must take a picture with their smartphone of the
target object and upload it to a central service where all the collecting data will be
analyzed. For instance, the image could result useless if not focused or not taking
the interested subject. Furthermore, the view of the camera is often obstructed, as
when a mobile device is brought into a pocket.

Air Monitoring Sensor
Air pollution is certainly one of the most important worldwide concerns nowadays.
MCS systems relying on large user participation have a great potential for air
monitoring. However, most of the air monitoring sensors available are non-
embedded, but standalone devices. As a result, special incentives should be
put in place to motivate users buying and using such devices. Typically, air
monitoring sensors are equipped with Bluetooth [81], but it exists implementations
that require a wired connection such as the GasMobile hardware [12]. It is a sensor
for consumer and industrial applications to monitor gases like carbon monoxide,
oxygen, ammonia, fluorine, chlorine dioxide and others. The dust sensor [13] is a
particular and very promising prototype for air monitoring, with the possibility to
consult or share the data to the community. This sensor, differently from the others
concerning the food allergens, could be deployed also in workplaces to guarantee
the workers’ safeness without spending a great amount of money, but having a
simple sensor easily accessible by workers.

Gluten Sensor
The gluten sensor is a non-embedded sensor which makes possible for people
with celiac disease to monitor and share food properties [11]. The device only
works in pair with a smartphone to track statistics. It is an affordable handheld
device that allows users to quickly and easily check foods for gluten. It consists of
two parts: a sensor pod and a number of single-use disposable testing units that
users dip into their food. Once a sample is collected, the testing stick is put into
the pod, the device analyzes it and then send the test result to the smartphone
via Bluetooth. There is also the possibility to share results amongst users, to be
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informed about which restaurants or dishes are safe for those with food allergies
or particular food sensitivity. This is one of the best example about health care
and food sensing, collecting and sending data and also sharing in cloud. Thus,
other devices may result useful for a wide range of different allergens in the same
context, such as peanuts. This is due to everyday people are becoming more aware
and more concerned about what hidden things are in the food they are eating.
Furthermore, this is the typical example of an application that does not need any
incentives, as the people are interested in joining the community.

Radiation Sensor
Similarly to the gluten sensor, the radiation sensor is non-embedded. It detects
nuclear radiation samples and complex operations such as A/D conversion,
filtering and threshold comparison are offloaded and executed by a smartphone.
The idea originated by the users need in having cheap and affordable mobile
radiation detectors, which appeared to become urgent after the nuclear disaster of
Fukushima [14].
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Chapter 3

Mobile Crowd Sensing

Mobile Crowd Sensing (MCS) has gained significant attention and is becoming
a new appealing paradigm for sensing. For data collection, MCS systems rely
on contribution from mobile devices of large number participants, or a crowd.
Smartphones and wearable devices are deployed widely and already equipped
with a rich set of built-in sensors, making them an excellent source of information.
The ubiquitous diffusion of mobile devices along with the rich set of built-in
sensors they are equipped with are certainly the two main key enablers leading to
the success of MCS paradigm. Accelerometer, GPS, camera and microphone are
only a representative set of sensors equipped in mobile devices. Although MCS is
an emerging paradigm, a number of MCS applications relying on mobile devices
sensors have already been developed in different scenarios, including healthcare,
environmental monitoring, public safety and intelligent transportation systems
such as traffic monitoring and management [82, 83]. All these applications suit
very well urban scenarios. As a consequence, MCS is an essential solution for
building smart cities of the future, which aim at using ICT solutions to improve
management of everyday life of their citizens [5].

Mobility and intelligence of human participants guarantee higher coverage
and better context awareness, if compared to traditional sensor networks. On
the other hand, individuals may be reluctant to share data for privacy concerns.
For this, the research community in MCS has put lot of effort in developing
incentive mechanisms to foster user participation [84, 85] and in investigating
privacy issues [86, 87]. However, privacy is not the only barrier limiting user
participation because sensing is costly. The reason is twofold: from one hand
mobile devices are battery constrained, hence it becomes important to exploit such
resources appropriately, i.e. not perform unnecessary sensing operations. On
the other hand, collected information often requires to be delivered to a central
collector. Communication technologies such as 3G/4G, WiFi or Bluetooth affect
battery lifetime differently [88, 89] and have different monetary costs for reporting.
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Despite of the growing interest in the research community, MCS solutions
remain largely uncategorized. This chapter develops a detailed taxonomy to
classify MCS applications, methodologies and architectures and the most common
sensing elements available in today mobile devices. The objective is not only to
classify, analyze and consolidate past research, but also to outline potential future
research direction.

3.1 Background on Mobile Crowd Sensing Systems
MCS systems rely on sensors and communication interfaces embedded in com-
monly used mobile devices such as smartphones, tablets and wearables [90, 91].
Although being battery constrained, mobile devices are nowadays powerful, hav-
ing computing, communication and storage capabilities. Indeed, they are essential
for our daily activities, including business, communication, social activities and
entertainment [92, 93]. According to Gartner statistics, the number of worldwide
smartphones sales in 2015 was 1.4 billion units [94]. Wearable devices are in-
creasing in popularity as well. The number of wearables shipped in 2014 was 70
millions, which is projected to reach 91.3 millions in 2016 [95]. Smart watches,
glasses, rings, gloves and helmets are the most popular wearable devices currently
available on the market, which is projected to rise up to $ 30.2 billion by 2018 [96].

The term mobile crowd sensing was first introduced by Ganti et al. [90] and
indicates a more general paradigm than mobile phone sensing. Guo et al. in [91]
give a definition that clearly highlights this difference: “MCS is a new sensing
paradigm that empowers ordinary citizens to contribute data sensed or generated from
their mobile devices, aggregates and fuses the data in the cloud for crowd intelligence
extraction and people-centric service delivery”. To operate efficiently, MCS systems
require participation and contribution of a large number of users. Although entire
communities can potentially benefit from such a contribution, singular person may
be reluctant to participate, being selfish or having privacy concerns. To easy this
burden, in the last years the research community has put lot of effort in developing
proper incentive mechanisms [97] and in investigating privacy issues [84, 85, 87,
86].

The capillary spread of smartphones and wearables along with the rich set
of built-in sensors these devices are equipped with are certainly the main key
enablers leading to the success of MCS paradigm. Accelerometer, gyroscope,
GPS, microphone and camera are only a representative set of sensors that facili-
tated the development of a number of applications in a wide range of scenarios,
including health care, environmental and traffic monitoring and management.
Many applications using smartphone sensors have been already developed and are
currently in use, as surveys on phone sensing systems classify them [82] and [83].
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To illustrate few representative examples, HealthAware [75] and DietSense [20]
foster healthy eating by collecting images of consumed food and inspect daily
user-activity by extracting context information such as time and location where
food was consumed. For this purpose both applications use accelerometer, GPS
and microphone. Nericell [76] and the Pothole Patrol [7] monitor road surface
and traffic conditions. NoiseMap [24] and GasMobile [24] monitor noise and air
quality respectively.

MCS can greatly improve citizens everyday life and provide new perspectives
to urban societies. MCS is an essential solution for building smart cities of the
future, which aim at using ICT solutions to improve management of everyday life
of their citizens [5]. The Internet of Things (IoT) paradigm is the candidate solution
to provide a simple infrastructure to foster the smart cities. For this, it is required
to deploy sensors equipped with communication capabilities widespread [6].
According to Gartner statistics, during 2015 the number of connected objects in
smart cities exceeds 1.1 billion and it is expected to grow up to nearly 10 billion by
2020 [98]. In such a context, active participation of citizens can improve spatial
coverage of already deployed sensing systems with no need of further investments.
MCS leverages human intelligence, which has a deeper context understanding than
traditional sensor networks. For example, having human involved in detection of
free parking spot detectionprovidesmore accurate performance [90, 9]. To illustrate,
ParkSense detects vacant parking spots using WiFi scans of smartphones [8].
Parking is only one of the possible city services where MCS can play a fundamental
role thanks to its unique features. In addition, other potential applications are
smart traffic management [99, 100] and environmental monitoring, including
air [81, 12] and noise quality [101, 24].

This chapter provides a taxonomy, definitions and comprehensive analysis
of the available mobile crowd sensing solutions. During the past five years, the
research community proposed a number of sensing architectures and focused on
the analysis of incentivemechanisms andprivacy issues aswell as the reliability and
trust of data collection process. With the sole exception of [102], this vast amount
of work remains uncategorized, with many of the core paradigms undefined. To
illustrate, for example, there is no consensus on the term “opportunistic sensing”.
According to Ganti et al. [90] “opportunistic sensing” is defined as “On the other
hand, opportunistic sensing is where the sensing is more autonomous and user involvement
is minimal (e.g. continuous location sampling)”. However, Khan et al. [83] state that
opportunistic sensing requires no user involvement at all, since the decisions to
perform sensing is a prerogative of the device itself. Finally, Han et al. [103] enlarge
previous vision of opportunistic sensing in the context of single user involvement
and they describe opportunistic sensing as a paradigm enabling cooperation
among smartphones. Typically, both terms “opportunistic” and “participatory”
sensing remain consider under the common umbrella of MCS [90, 83, 104, 103]. In
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other cases, both “mobile crowd sensing” and “participatory sensing” are used
interchangeably [99]. Other times, both “mobile crowd sensing”, “participatory
sensing” and “opportunistic sensing” are synonyms [105]. With this plethora of
definitions, the objective of this chapter is to simplify understanding of the current
definitions and available techniques and solutions in the field of MCS.

Cloud Collector

Crowd

Mobile Devices

LTE

WiFi

Accelerometer Gyroscope Dual Camera Microphone Ambient Light Proximity

Figure 3.1: Cloud-based MCS system

3.2 Taxonomy
To easy and simplify the understanding of MCS this section elaborates a novel
taxonomy that provides a clear organization of the state-of-the-art. Figure 3.2
illustrates the proposed taxonomy, which is a layered taxonomy. The proposal
provides a hierarchical view, where on the first level the classification groups
the works according to their application target (Section 3.2.1). On a second level,
this category captures in detail properties of MCS systems and analyzes works
in relation to their application target. Specifically, this section considers the
methodologies through which the sensing activity is performed, for example how
users join MCS systems (sensing activity category), how tasks are assigned and
executed (task category) and the properties of reported data (data property category)
In addition, it also analyzes the sensing elements used per application (category
type of sensor). Despite the taxonomy and the classification illustrated in Section 2,
in this section the focus is not on the properties of the sensors, but a more detailed
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analysis on motivations and goals of using sensing elements for each application
target is provided. Next, Section 3.3 overviews the available literature exploiting
this layered taxonomy.

TAXONOMY

APPLICATION TARGET

TYPE OF SENSORS

SENSING ACTIVITY

SENSING TASK

PROPERTIES OF DATA

Figure 3.2: Mobile crowd sensing taxonomy

3.2.1 Application Target
Theapplication target is the key layer of the taxonomy. Anyelement of such category
corresponds to a different application, for example environmental monitoring.
Having this key layer allows to unveil particular properties of MCS systems. For
example, health care applications usually employ general purpose sensors while
environmental monitoring applications rely on specialized sensors very often.
Table 3.1 briefly summarizes all the applications that are described in more details
in the following.

Table 3.1: Classification of Application Targets

Target Acronym Description
Environmental Monitoring EM Measure the quality of the environment
Health Care HC Measure biological parameters influencing human health
Intelligent Transportation Systems ITS Improve traffic forecasting and public transportation design and management
E-Commerce EC Analysis of goods price for offline markets
Public Safety PS Measures and initiatives for public safety
Human Behavior HB Analysis of human activities and emotions while using mobile devices
Mobile Social Networks MSN Exploit social interactions among users such as friendship
Other OTH Other scientific contributes not included in previous categories

Environmental Monitoring (EM)

Monitoring the environment is very important for human health. This is espe-
cially true in cities, where the majority of the worldwide population lives. To
this end, MCS is the ideal solution to improve strategies and policies that aim
at understanding the current status of the environment and provide forecast
analysis. Ubiquity and mobility of mobile devices allow fine-grained analysis of
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environmental phenomena like air pollution and noise. For example, PEIR [106]
analyzes on a per-user basis how transportation choices simultaneously impact on
the environment and which is the risk-exposure for the individual.

Air Quality monitoring Clean air is fundamental for human health. However,
air pollution in cities is a major issue today [81]. Indeed, atmospheric pollutants
are responsible for a variety of respiratory diseases and can be cause of cancer if
individuals are exposed for long time periods [12].

Noise Monitoring Noise pollution in urban areas is a well-known problem
affecting every-day life of citizens. For the authorities it is very important to
monitor this phenomena to adopt proper strategies and countermeasures [101].
Creating noise maps [24] is a common methodology to analyze noise pollution.
However, conventional methods are often very expensive, inaccurate and rarely up
to date. Leveraging citizen participation certainly lowers this burden to provide
open and inexpensive noise maps and data graphs [107] .

Health Care (HC)

Health care consists in diagnosing, treating, and preventing illness, diseases and
injuries. This category classifies all MCS systems which make use of data for
individuals and community heath care purposes, including food and fitness
monitoring, elder support and assistance.

Intelligent Transportation Systems (ITS)

Intelligent transportation systems (ITS) rely on IT solutions with the goal of
providing innovative services, improving cost effectiveness and efficiency of
transportation and traffic management systems. For example, wind warning
systems alert drivers approaching bridges in case of dangerous wind conditions.
The most well-known application of ITS systems is in monitoring traffic and road
conditions. Detecting traffic conditions through MCS paradigm provides to the
citizens estimations of the time needed to reach some place [76] or about next bus
arrival [108]. As for road monitoring, the combined use of accelerometer and GPS
helps detecting holes and bumps [7].

E-Commerce (EC)

Websites enable users to track and compare price information, however this is
very difficult for offline markets. MCS can help tracking price dispersion, which is
the difference in terms of price of the same good among different vendors [109].
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Camera and GPS used in combination can track fuel prices, which are later
compared with information gathered by other users to detect most convenient
petrol stations [19].

Public Safety (PS)

Nowadays the public safety is one of the most important and challenging issues
for general public and administrations, which includes protection and prevention
from consistent damages, injuries or generic dangers. Typical examples to take into
account for public safety are burglary, trespassing, harassment, inappropriate social
behaviour, flooding or earthquakes. For instance, it is possible to evaluate the safety
of citizens exploiting data collected from geosocial networks and relating them
with crime [110]. In other words, public safety is responsible for taking appropriate
countermeasures about man-made crimes, incidents like crash accidents or natural
disaster like flood.

Human Behaviour (HB)

Mobile devices have a potential to classify human behaviour. For example, for
psychologists it is important monitor patients without asking to recall events after
long time. The use of mobile devices easy this burden [111]. Although sensors
can efficiently perform activity recognition, some human activities are complex
and require machine learning techniques to infer particular moments of people’s
life [112].

Mobile Social Networks (MSN)

Mobile Social Networks are communication systems that rely not only on human
behaviours and activity recognition but also on the social needs of the users [113],
exploiting mobile devices. In this category the most fundamental aspect is the
collaboration between users, who share with the other participants the data sensed
through smartphone sensors, such as recognized activities and locations.

Others (OTH)

This field classifies all the scientific contributions that does not deal with the issue
of specific user behaviour and does not have a particular target application. These
are useful and contribute in MCS area of research in other general fields, such
as energy efficiency, incentives, utility maximization, workload allocation, data
collection, frameworks, platforms, etc.
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3.2.2 Type of Sensors
This category investigates how the most common sensing elements analyzed in
Section 2 are used per application target. They are summarized in Table 2.1.

3.2.3 Sensing Activity
The sensing activity category analyzes the methodologies and procedures used
to perform sensing. This category includes strategies that are used to involve
users in the process, who is responsible for taking sensing decisions, the policies
adopted for data reporting and whether collected data can be useful for single
individuals or to a community. Figure 3.3 illustrates the terminology considered
for this category in more details.

SENSING ACTIVITY

USER RECRUITMENT

VOLUNTEER INCENTIVE MECHANISMS

USER INVOLVEMENT

PARTICIPATORY OPPORTUNISTIC

DECISION PROCESS

MOBILE DEVICE COLLECTOR

SCOPE

INDIVIDUAL COMMUNITY

REPORTING

INFRASTRUCTURE AD-HOC

Figure 3.3: Sensing activity taxonomy

User Recruitment

The category user recruitment denotes the process in which users join the MCS
system and it can be based on volunteer participation or through incentive
mechanisms. This classification considers strategies and mechanisms used to
create a MCS system, which is to motivate users to participate. The strategies
are strictly related to the application target of the MCS system. For instance, for
a healthcare application that collects information on food allergies (or gluten-
free [11]), people affected by the problem typically volunteer to participate, being
very interested. However, if the application target is more general and does
not match well users’ interest (e.g., noise monitoring [24]), the best solution is
to encourage user participation through incentive mechanisms. It should be
noted that these strategies are not mutual exclusive. That is, it could be perfectly
possible having an application for which users volunteer and receive a reward for
their contribution. Such solution could be suitable in case users should perform
additional tasks (e.g., sending more data) or in particular situations (e.g., few users
contribute from remote area).

29



3 – Mobile Crowd Sensing

Volunteer In volunteer-built MCS systems users are willing to participate and
contribute on spontaneous basis and they typically do not expect to receive a
reward. A framework for recruitment is proposed in [133], where the organizers
are allowed to choose well-suited participants according to some features including
their habits and data collection is based on geographical and temporal availability.
Apisense is another example of platform helping organizers of crowd sensing
systems to collect data from volunteers [134].

Incentive Mechanisms Incentives are required when users do not have a strong
motivation in participating in theMCS system. It existsmany strategies to stimulate
participation [97, 87, 135]. Zhang et al. [84] propose to classify the existing works
on incentives into three categories: entertainment, service and money. In the first
category they consider methods that stimulate people by turning some sensing
tasks into games, so users can enjoy while participating in sensing. The second
category is about service-based mechanisms, which consist in remunerating
personal contribution with system service. Finally, monetary incentives methods
provide money as reward for users’ contribution.

User Involvement

Understanding how users are involved in the sensing process is very important
to adopt proper incentive mechanisms. Indeed, different application target may
require users to be actively engaged in performing specific tasks. In other words,
after having received a task, the user needs to perform some activity, for example
turning on the microphone to report audio samples. However, there are cases
where it is more beneficial having users collecting data opportunistically. This
occurswhen no specific task is assigned in origin or the users do not have to perform
specific operations consciously, being sensing operations triggered automatically
by the mobile device. Partecipatory and opportunistic denote respectively the cases
in which users are actively engaged or not in the sensing process respectively.

Sometimes it is difficult to define exactly if a sensing paradigm is participatory
or opportunistic and also in literature these definitions are often misleading. For
instance, the authors of a system that predicts bus arrival time [108] define the user
involvement as participatory, considering that users decide actively to participate
in the sensing process. Actually, in the proposed taxonomy it is an opportunistic
involvement because the user is unconscious in respect to the sensing process,
which exploits accelerometer and microphone to detect when a user is on a bus
("am I on a bus?") and to collect data. Just to clarify, in the proposed classification
the sensing would have been participatory if the user had communicated actively
to be in a bus and to share the position.
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Participatory MCS systems relying on participatory policies require users to be
actively involved in sensing operations as they are asked to perform some tasks. To
this end, users are responsible to decide when, what, where and how to perform
sensing (e.g., to take some pictures with the camera due to price comparison [115],
or record audio due to noise analysis in cities [101, 136]). Under such a paradigm,
the users are free to accept or not incoming tasks and they are rewarding on
the basis of the number of accepted tasks and the quality of accomplishment.
An advantage of this approach is that complex operations can be supported by
exploiting the intelligence of the users. Indeed, they can solve the problem of
context awareness and consciously meet the application requests in a very efficient
way. For instance, a person who wants to get involved in collecting a sample of
noise pollution in the neighborhood simply takes the smartphone in the hand to
accomplish the task. On the other hand, a problem strictly related to this advantage
is that the quality of data is totally dependent on participant enthusiasm and ability
to reliably collect sensing data. Applications are best suited to the participatory
model when they have a collection of interested users whose size is at least as large
as number of sensors required to map a phenomena efficiently (e.g., celiacs [11]).

Opportunistic MCS systems relying on opportunistic sensing paradigm do not
task users specifically, minimizing their involvement in the process. This means
that users have only to declare their interest in contributing data. Then, all the
decisions of what, where, when and how to perform sensing are demanded for
example to an application running on themobile device. To this end, context-aware
sensing becomes very important for opportunistic sensing paradigm. Indeed,
capturing images when the smartphone is in the pocket not only does not bring
any utility for the system, but also has a cost in terms of energy for the device.
As a consequence, context recognition has been largely investigated in the recent
years. For example, to detect road conditions, accelerometer and GPS readings are
obtained only when users move by car [7]. Other fundamental challenges that need
investigation are providing sensing coverage when sensor mobility is uncontrolled,
ensuring consistent sensor calibration and protecting custodian privacy.

• Active. Tasks are triggered by the smartphonewhen some context or a certain
situation in the user surroundings that is requested by the task authority is
recognized. This is the approach this thesis will take into account in chapter 4
presenting a framework for data collection.

• Passive. Tasks are accomplished by the software automatically. Usually the
data collector decides a sampling rate for sensing the data.
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Decision Process

The category decision process analyzes the sensing activity on the basis of who is
responsible for taking decision to collect data. To illustrate with an example, when
the mobile devices take decisions, samples can be collected upon meeting specific
condition such as in advantageous context. This category identifies two main
paradigms (see Fig. 3.3). From one hand mobile device or user can take decisions
locally. This is a distributed paradigm and may require coordination among the
devices if users are tasked. On the other hand, the crowd sensing collector can be
designed to be responsible for taking sensing decisions. The collector decision
process has a centralized view of the amount of information already collected and
therefore can task users or demand for data in a more efficiently manner.

Mobile Device A mobile device or a user takes sampling decisions locally. In the
latter case, the single individual decides when, where, how andwhat to sample, e.g.
taking a picture for sharing the costs of goods [114]. It indicates the participatory
paradigm. When devices take sampling decisions, it is often necessary to detect
the context in which smartphones and wearable devices are, as the opportunistic
paradigm. The objective of this local approach is to maximize the utility of data
collection and minimizing the cost of performing unnecessary operations.

Collector When the collector takes sensing decisions, it has to communicate the
decisions to the smartphones. Centralized decisions can fit both participatory and
opportunistic paradigms. If the requests are very specific, they can be seen as tasks
by all means and indeed the centralized decision paradigm suits very well the
participatory sensing approach. However, if the requests are not very specific, but
contain generic information such as “send more audio samples”, the opportunistic
paradigm is exploited.

Scope

The scope category identifies who can benefit from data collection and processing.
This category includes single individuals and communities. In the first case,
the main interest is personal. An example of this kind is sensing data to track
biological parameters for fitness and wellness. However, it exist many cases where
communities can take advantage from sensing. For example, monitor air quality
or road conditions. When the scope is community-based, large user participation
is needed in order to have many samples to better characterize the phenomena.

Individual The scope of sensing activity is considered to be individual when it
concerns a process focusing on personal interests. Data is sensed from the crowd
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for individual needs and each user can receives a sort of feedback that may result
helpful for some activities or habits (e.g., monitoring daily physical exercises and
diet [75]). For instance, in healthcare domain, the users sample data to have a
feedback about their health condition [117] or they can better take care about their
food allergies (e.g., celiac people [11]).

Community When the benefits of sensing activities concern entire communities,
large user participation is required to better characterize the phenomenon. In
this context the utility given by the contribution of a single user is marginal. For
example, while monitoring air pollution [81], a single individual does not have an
immediate advantage while she contributes samples.

Reporting

Once data is collected from the mobile device, it is typically delivered to a
central collector responsible for processing. This category considers two possible
methods to report data, namely infrastructure and ad-hoc-based. Infrastructure-
based reporting operates through cellular or WiFi networks. Ad-hoc-based
reporting involves opportunistic communications between the devices, using
technologies like Bluetooth and WiFi-Direct. With this paradigm samples need to
hop many times before reaching the collector. For such a reason, ad-hoc reporting
should not be used for application having strict constraints on latency.

Infrastructure Reporting data through infrastructure-based communications
is a more energy-demanding task. Indeed, technologies used for opportunistic
communications like Bluetooth and WiFi-direct are more energy-efficient than
cellular (3G/4G) and WiFi networks. However, having infrastructure-based
communications enables fast reporting of urgent data. For this, cellular connectivity
should be preferred as WiFi connection is not always available (e.g., building a
real-time map for monitoring availability of parking slot [9]).

Ad-hoc This category includes data forwarding utilizing intermittent connections
with short-range radio communications, such as Bluetooth and WiFi-Direct. If
Bluetooth is used, it is possible to exploit a collaborative approach with other
devices in the neighborhood. This can also enable coordination for distributing
task execution.
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3.2.4 Sensing Task
InMCSsystems, thenotionof sensing task is extremely important. Bothparticipatory
and opportunistic sensing paradigms (see Section 3.2.3)make use of tasks to achieve
the target. In the participatory paradigm they are explicitly revealed to users,
whereas in opportunistic sensing they are implicit. Thismeans that the system itself
adopts mechanisms that encourage users to contribute to achieve a given target,
leaving to the single individual the freedom to decide the level of contribution.
Fig. 3.4 illustrates the proposed taxonomy to characterize sensing task properties.

SENSING TASK

ASSIGNMENT

A-PRIORI A-POSTERIORI

DISTRIBUTION

CENTRALIZED DECENTRALIZED

EXECUTION TIME

SYNCHRONOUS ASYNCHRONOUS

EXECUTION METHODOLOGY

INDEPENDENT COLLABORATIVE

MANAGEMENT

AUTONOMOUS COORDINATED

SCOPE

EVENT-BASED CONTINUOUS

Figure 3.4: Sensing task taxonomy

Assignment

Task assignment describes the process of attributing jobs to users. On the basis of
the time occurrence of the phenomena to capture, two main strategies can assign
tasks, a-priori and a-posteriori. Note that task assignment should not be confused
with task distribution, which is considered as a different category.

A-priori Tasks should be assigned a-prioriwhen the objective to be achieved is
already clear before starting the sensing campaign. To illustrate with an example,
monitoring a phenomenon like temperature or air pollution [81] fall in this category.

A-posteriori Tasks can be defined to assigned a-posterioriwhen the main interest
is not monitoring a phenomenon, but receiving a feedback on an already occurred
event. This approach is certainly helpful in public safety context, for example to
receive information from users that assisted to a crash accident. In addition, in
many applications exploiting social networks tasks are decided only after users
have already performed sensing [122, 123].

Distribution

Tasks can also be classified according to the way in which they are distributed
among the users. Following themodel of Pournajaf et al. [87], distribution introduces
three main categories: centralized, decentralized and hybrid. These categories
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highlight the entity responsible for task assignment. Note that this classification
differs from task assignment classification, which focuses on the instance of time
tasks are generated.

Centralized The distribution is centralizedwhen the tasks are created by a central
authority or a tasking entity and they are directly assigned to all the participants.
Users do not re-distribute tasks among them, but they only have to perform
the assigned job. Typical centralized task distribution involves environmental
monitoring applications such as detection of ionosphere pollution [138] or nuclear
radiation [14].

Decentralized When the task distribution is decentralized, each participant be-
comes an authority and can either take the decision to perform the task or to
forward it to other users. This approach is very useful when users are very inter-
ested in some events or activities and the purpose is not to monitor a phenomenon.
A typical example is Mobile Social Network or Intelligent Transportation Systems,
to be aware of public transport delays [108] or availability of parking spots [9].

Hybrid The hybrid distribution has features of both previous categories. For
example, tasks can be assigned by a central authority for new participants joining
the system. Later, users act as peers receiving tasks from other peers in a
collaborative manner.

Execution Time

Execution time of tasks can be synchronous or asynchronous. This category
considers the cases in which the participants have to start the sensing process all
together in the same moment or not.

Synchronous This category analyzes the case in which the users start together
the sensing activity. For synchronization purposes, the participants can commu-
nicate each other or receive an exact time from a central authority. For instance,
LiveCompare [115] compares the price of goods and the users should start sensing
synchronously, otherwise the comparison does not provide meaningful results.
This approach is strictly related to the a-posteriori task assignment.

Asynchronous The execution time is asynchronous when the users perform
activity independently. This approach is used for monitoring, because the ultimate
goal is to receive a certain amount of data regardless the start time of the sensing
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campaign. Examples of asynchronous task assignment are noise [24] and air
pollution [12] monitoring.

Execution Methodology

Execution methodology analyzes whether tasks execution is performed in collabora-
tive manner by the participants.

Independent Task execution methodology is independent when each mobile
device accomplishes the requested task independently from other devices. If the
device finds itself in a bad context or is running out of battery, the tasks can be
rejected.

Collaborative Methodology is collaborativewhen the smartphones execute the
requested tasks with the help of other mobile devices. Despite independent
execution, if the device is in unfavorable conditions, the task can be forwarded to
other users.

Management

Task management describes how the system can be categorized considering the task
allocation scheme [139]. In other words, it determines if participants must be able
to provide the data requested from the collector by themselves or they can manage
the task to other users involved in the sensing process(e.g., a mobile device cannot
sense the temperature of a place and it manages the task by itself asking to another
user in the surroundings).

Autonomous A management is autonomous when a user does the task by his
own, in a way totally independent from the other ones. If a user does not succeed
in accomplishing the task, it is not done by another one. It will be the central
authority, or the collector, to give the task to other participants.

Coordinated Task management is coordinated when users cannot accomplish
a task or find someone who can do it in a better way and make direct queries to
other users. A typical example of coordinate allocation is Micro-Blog [124], in
which every time a particular content is not available on the map, the participants
can mark out a geographic position and make direct queries to all smartphones
that are located close to that location.
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Frequency

This category analyzes how often a task has to be executed. Some types of tasks
can be triggered by event occurrence or because the device is in a particular context.
On the other hand, it exists tasks that have to be performed continuously.

Event-based The frequency of task execution is event-basedwhen data is sensed
after an event has happened. Events can be the occurrence of a particular situation
or a given context activity (e.g., users moving outdoor, or getting on a bus). As
a result, event-based task execution is not regular, but it requires a decision to
trigger the process. In participatory sensing paradigm, users are typically aware
of their context and can perform directly the task. For example, monitoring a
community interest (e.g., food allergies [11]) or sensing data after an event, such as
taking pictures after a car accident or a disaster (e.g., earthquake, flooding). In
opportunistic sensing, tasks can be event-based upon recognition of the context
(e.g., user getting on a bus[108]).

Continuous This category classifies the tasks that are accomplished regularly
and independently by the context of the smartphone or the user activities. The data
collection continues until there is a stop from the central collector (e.g., quantity of
data is enough) or from the user (e.g., when battery level is low). In a continuous
sensing it is very important to set a sampling period that should be neither too low
nor too high, to result a good choice for data accuracy and in the meanwhile not
too energy consuming. For instance, air pollution monitoring [81] must be based
on a continuous sensing to have relevant results and should be independent from
some particular event.

3.2.5 Properties of Data
Sensors generate different types of data and analyzing data properties is very
important. For example, images captured after a crash accident have a different
priority than temperature samples. The urgency of data delivery is very strict in
the first case while it is delay-tolerant in the second case. Moreover, the amount
of data to be transmitted is very different: images are heavy in size if compared
to temperature readings. Typically, applications make use of different types of
data simultaneously. For example, Dong et al. [19] developed an application to
detect fuel prices in gas stations using both pictures and location records. While
approaching gas stations, an algorithm extracts the price from pictures recorded
through the camera. The location of the gas station is associated to each price
thanks to the GPS. Fig. 3.5 illustrates the proposed taxonomy for this classification.
In addition to distinguish different data types, the taxonomy investigates delivery
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strategies and granularity of data. It should be noted that the categories delivery
and reporting (see Section 3.2.3) differ because they investigate respectively the
delivery urgency based on the type of data and technologies used for reporting.

PROPERTIES OF DATA

TYPE

VALUE IMAGE AUDIO POSITION

DELIVERY

REAL TIME DELAY TOLERANT

GRANULARITY

FINE-GRAINED COARSE-GRAINED

Figure 3.5: Properties of data taxonomy

Type

Different sensors generate a different type of data. To be as general as possible, this
category defines types to be representative. Indeed, the same sensor can generate
data in form of different types. For example, in NoiseMap [24] the microphone
does not record an audio file as usual, but it measures a value in dB corresponding
to the level of noise in an given location.

Value The term value indicates data types for which it is associated a numerical
value (e.g., a noise level or raw data of accelerometer) or a classification label
(e.g., user moving or not, car or bus movement detection, noise of something
particular [140]).

Image This subcategory considers both images and video files. In the first case,
data is obtained using a built-in camera in the smartphone, whereas video are
usually recorded exploiting both camera and microphone.

Audio Audio files are sampled with built-in microphone. It is important to
distinguish a precise audio signal recorded and classified as audio with respect
to other applications where the microphone detects and classify level of noise or
voice.

Position The position corresponds to the location of the device at time of sensing.
To each position record, information on latitude and longitude is always given
whereas the altitude is typically optional.
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Delivery

The delivery category analyzes the urgency data should be sent to the collector.
There are two main strategies: real-time and delay-tolerant.

Real Time Real time data delivery occurs when the collector needs to receive
and process data very fast. Typical applications with such requirements are those
related to emergency. In this case, cellular and WiFi technologies should be
preferred for communications. Consequently, an important aspect that needs more
investigation is the problem of congestion control in large wireless networks where
nodes periodically broadcast time-critical information [141]. A proposed solution
could be to implement scheduling and queue management techniques, in which a
queue is maintained with only the latest status packet of each source, overwriting
any previously queued update from that source [142].

Delay Tolerant When the purpose of the application target does not have strict
requirements in receiving and processing data. Under such scenario, opportunistic
communication technologies can be a good option.

Granularity

The granularity helps analyzing the level of detail data is sensed. This category
identifies two main levels: fine-grained for high precision measures and coarse-
grained (see Fig. 3.5). For instance, the notion of position is fine-grained when it
provides exact information on latitude,longitude and altitude. However, it can also
be coarse-grained when the value provided is just an approximation, for example
when it is used to distinguish outdoor from indoor positions. Applications can
use fine and coarse levels of details simultaneously.

Fine-grained Data granularity is fine-grainedwhen it is very detailed and precise.
To illustrate some examples, readings obtained from the accelerometer and GPS
and pictures can be attributed to this category.

Coarse-grained Data is coarse-grained if obtained with less levels of detail or in
low resolution. For example, the GPS can also be used only to detect indoor or
outdoor position.

3.2.6 Privacy
MCS involves the collection of detailed information from users’ mobile devices
during task management processes [87]. It implies the possibility that collected
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data could compromise not only participants’ privacy but also unconscious people
in the surroundings (e.g., recording an audio in which somebody is speaking). Sev-
eral privacy concerns could be taken into account. For instance, the identification or
disclosure of sensitive attributes increases vulnerability and subsequently reduces
participation [86]. Kantarci et al. consider trustworthiness of crowdsourced data
an important challenge in S2aaS (Smartphone Sensing as a Service), as maliciously
altered data can be misleading for the S2aaS customer [143]. Nonetheless, con-
sidering these aspects is not the scope of this thesis’ analysis. This section aims
only at classifying works considering if they have privacy constraints or not. For
instance, when the task is monitoring air quality there are no privacy constraint.
On the contrary, when it is necessary to use sensors as microphone or camera,
the data collection process is strictly related to the privacy, overall if the user is in
a public space (e.g., taking and sharing pictures about a car accident for public
safety in which many people are involved).

3.3 Overview on the Architectures
This overview presents some of the most cited works about MCS systems and
classifies them exploiting the taxonomy proposed in 3.2. First, this section shortly
explains and distinguishes them according to the taxonomy of target application
proposed in 3.2.1. Then, specific tables classifies MCS architectures according to
type of sensors, sensing activity, sensing task and properties of reported data.

Environmental monitoring
Mahali Project [116] is one of the newest work in environmental monitoring.
Recent discoveries of signature in the ionosphere related to earthquakes and
tsunamis suggest that ionosphere may be used as a sensor that reveals Earth and
space phenomena [138]. Consequently, Mahali exploits GPS signals to enable a
tomographic analysis of the ionosphere, which is seen as a global earth system
sensor. Furthermore, it is built to support well different configurations of MCS,
for instance delivery can be done with infrastructure or opportunist approach,
data collection in synchronous or asynchronous mode and a potentially good
educational incentive mechanism is proposed to recruit and involve people in
the scientific contribution. The Personal Environment Impact Report (PEIR) [106]
exploits location data sampled from everyday mobile devices to calculate per-
sonalized estimates of environmental impact and exposure. Crowdsourcing of
Pollution Data using Smartphones [144] involves the general public and uses
off-the-shelf smartphones as noise sensors. The authors seek to provide a low cost
solution for citizens to measure their personal exposure to noise in their everyday
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environment and participate in the creation of collective noise maps by sharing
their geo-localized and annotated measurements with the community.

Air Monitoring Commonsense project [81] exploits participatory sensing sys-
tems that allow individuals tomeasure their personal exposure, groups to aggregate
their members’ exposure, and activists to mobilize grassroots community action.
It is a distributed air quality monitoring system, which combines handheld envi-
ronmental air quality devices with a browser-accessible web portal. Hasenfratz et
al. [12] present the design, implementation, and evaluation of Gas-Mobile, a small
and portable measurement system based on off-the-shelf components and suited
to be used by a large number of people.

Noise Monitoring NoiseMap [24] is an application that gathers audio samples
and transfers them to an open platform to create a real-time map with values
of noise. It is evaluated in Frankfurt. Ear-Phone [107] is an end-to-end urban
noise mapping system that leverages compressive sensing to solve the problem of
recovering the noise map from incomplete and random samples. Delay tolerant
networks and WiFi technology are utilized for data delivery. NoiseTube [101]
is a noise monitoring platform that exploits GPS and microphone to measure
the personal exposure of citizen to noise in everyday life. The main feature is to
measure the level of noise, with the possibility to tag a particular type of noise and
label a location, also when participants are indoor and gps is not working.

Health Care

HealthAware [75] is a system that exploits accelerometer to monitor daily physical
activity and camera to take picture of food. SPA [117] is a smartphone assisted
chronic illness self-management system, which facilitates patient involvement
exploiting regular feed-back of relevant health data. Dietsense [20] is a system
that automatically takes media documentation of dietary choices with just-in-time
annotation, efficient review of captured media by participants and easy authoring
dissemination of the automatic data collection protocols. Mobile-phone based
Patient Compliance System (MPCS) [118] aims to reduce the time-consuming and
error-prone processes of existing self-regulation practice to facilitate self-reporting,
non-compliance detection, and compliance reminders. The novelty of this work
is to apply social behavior theories to engineer the MPCS to positively influence
patients’ compliance behaviors.
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Intelligent Transportation Systems

In [121], the authors exploit social networks to obtain direct feedbacks and
potentially very valuable information from people to acquire awareness in ITS. In
particular, it verifies the reliability of pollution related social networks feedbacks
into ITS systems. ParkNet is a solution for park monitoring and unlike traffic
and pothole detection does not require high accuracy in localization. It builds a
real-time map of parking availability and provide it to the users that are searching
for a parking slot. In [108], Zhou and Li present a system that predicts bus arrival
times relying on bus passengers’ participatory sensing. The proposed model is
based only on the collaborative effort of the participating users and it uses cell
tower signals to locate the users, preventing them from battery consumption.
Furthermore, it uses accelerometer and microphone to detect when a user is on a
bus. Nericell [76] is a system used to monitor road and traffic conditions, which
uses different sensors for a rich sensing and detects potholes, bumps, braking and
honking. It exploits the piggybacking mechanisms on users’ smartphones. The
Pothole Patrol [7] detects and reports the surface conditions of roads. It is evaluated
from thousands of kilometers of taxi drives in Boston and provides a classification
of identified potholes and surface abnormalities. VTrack [120] is a system which
estimates travel time challenging with energy consumption and inaccurate position
samples. It exploits a HMM (HiddenMarkov Model)-based map matching scheme
and travel time estimation method that interpolates sparse data to identify the
most probable road segments driven by the user and to attribute travel time to
those segments. WreckWatch [119] is a formal model that automatically detects
traffic accidents using accelerometer and acoustic data. It immediately sends a
notification to a central emergency dispatch server and provide photographs, GPS
coordinates and data recordings of the situation.

E-Commerce

Mobishop [114] is a distributed computing system designed to collect, process
and deliver product price informations from street-side shops to potential buyers.
It exploits the camera to scan receipts. In [109] the authors present a partici-
patory sensing paradigm which can be employed to track price dispersion in
homogeneous consumer goods even in offline markets. Similar examples are
presented in LiveCompare [115], which exploits the bar codes of products and in
PetrolWatch [19], which collects automatically fuel prices from gas stations.
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Public Safety

ISafe [110] is a system for evaluating the safety of citizens. It exploits data collected
from geosocial networks that are related with crimes and data census from Miami
county.

Human Behaviour

AndWellness [111] is a personal data collection system that exploits smartphone
sensors to collect and analyze data from user experiences. Darwin phones [112]
combine collaborative sensing and classification techniques to correlate human
behavior and context on smartphones. Darwin is a collaborative reasoning
framework based on classifier evolution, model pooling and collaborative inference.

Mobile Sociale Networks

Miluzzo et al. presents the CenceMe application [122], which combines the
possibility to use sensor embedded in mobile phones with sharing of sensed and
personal information through social networking applications. It takes a user status
in terms of the activity, context or habits and shares them in social networks.
Micro-Blog [124] is a system in which new kinds of applications-driven challenges
are proposed and are compared to the context of the users exploiting also the
location. EmotionSense [123] is a platform for social psychological studies based
on smartphones and its key idea is to map not only activities but also emotions
and to understand the correlation between them. It gathers users’ emotions as
well as proximity and patterns of conversation by processing the audio from the
microphone. MobiClique [22] leverages already existing social networks and
opportunistic contacts between mobile devices to create ad hoc communities
for social networking and social graph based opportunistic communications.
MIT’s Serendipity [127] is one of the first projects that explored the aspects
of mobile social networking. It is used to build informal interactions using
the combination of bluetooth hardware. SociableSense [125] is a platform that
realizes an adaptive sampling scheme based on learning methods and a dynamic
computation distribution mechanism based on decision theory. This system
captures user behaviour in office environments and provides the participants a
quantitative measure of sociability of them and their colleagues. WhozThat [128]
presents an opportunistic connectivity for offering an entire ecosystem on which
increasingly complex context-aware applications can be built. MoVi [126], a Mobile
phone based Video highlights system, is a collaborative information distillation
tool capable of filtering events of social relevance. It consists on a trigger detection
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module that analyzes the sensed data of several social groups and recognize
potentially interesting events

Others
Crowdsense@place [145] provides place related informations, including relation-
ship between user and coverage. It exploits a research on scaling properties
of place-centric crowdsensing [132] and presents money as incentive scheme.
In [129], the authors improve the location reliability, proposing a scheme in which
participatory sensing is used to achieve data reliability. The key idea of this system
is the location validation using photo tasks and expanding the trust to nearby
data points using periodic bluetooth scanning. The participants are asked to
send a number of photo tasks from the known location, which are manually or
automatically validated. ILR is evaluated in the context of McSense. It presents
amazon mturk [146] as incentive. SoundSense [73] is a scalable framework for
modelling sound events on smartphones, using a combination of supervised
and unsupervised learning techniques to classify both general sound types and
discover sound events specific to individual users. Travel packages are proposed
in [137], exploiting a recommendation system to help users in planning travels by
leveraging data collected from crowdsensing. The authors propose to distinguish
user preferences, extract points of interest (POI) and determine location correlations
from data collected. Consequently, personalized travel packages are determined
by considering personal preferences, POI, temporal and spatial correlations. In
ConferenceSense [130] collected data is used to extract and understand community
properties to sense large events like conferences. It uses some sensors and user
inputs to infer contexts such as the beginning and the end of a group activity.
Guo et al. [147] propose a model for sensing the volume of wireless activity at
any frequency exploiting the passive interference power. This technique utilizes
a non-intrusive way of inferring the level of wireless traffic, without extracting
data from devices. Furthermore, the presented approach is independent from the
traffic pattern and requires only approximate location data. In [58], Farshad et al.
exploit MCS for urban WiFi characterization and monitoring, measuring spectrum
and interference in the city of Edinburgh. MCNet [131] enables WiFi performance
measurements taken from users that participate in the sensing process. The
authors present a system for collecting and mapping data about WLAN with a
crowdsensing approach. SorroundSense [148] is a system that explores logical
localization, exploiting ambience fingerprinting. The key idea is that the combina-
tion of ambient sound, light and colour can be unique enough for localization and
to distinguish a place from another one.
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Chapter 4

Data Collection Framework for
Mobile Crowd Sensing Systems

Existing studies in MCS systems focus on developing efficient incentive mecha-
nisms to foster user participation, while data collection algorithms still require
investigation efforts. As illustrated in Sec. 3.2.3, there are two MCS paradigms that
involve users in the data collection process: participatory and opportunistic [82,
83]. In opportunistic sensing, the user involvement is minimal or null, which
means that the decisions to perform sensing and report data are application- or
device-driven. On the other hand, in participatory sensing the user is actively
engaged in the process. For example, a participant is in charge of capturing an
image or to record a video by deciding whether, when and for how long sensing
is performed. Participatory sensing is tailored to crowd sensing architectures
with a "central intelligence" responsible to task users, e.g. to ask one user to
record a video in a given area at a given time. This imposes a higher cost to the
user than opportunistic sensing in terms of cooperation effort. Having devices
or applications responsible for sensing decision, it lowers the burden for users
participation and makes opportunistic sensing ideal for distributed solutions.

This chapter proposes a novel distributed algorithm for gathering information
in cloud-based MCS systems, exploiting the opportunistic sensing paradigm. This
framework minimizes the cost of both sensing and reporting operations while
maximizing at the same time the utility of data collection, i.e. the quality of
contributed information. Fig. 3.1 illustrates the reference scenario considered.
The crowd exploits mobile devices sensors to contribute information, which is
delivered to a collector in the cloud that is responsible for data processing and
analysis. In the rest of the chapter, the terms crowd, participants and users will be
used interchangeably.

The data collection algorithm is cost-effective for the participants, minimizing
the cost they experience in performing sensing and reporting. The cost is measured
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4 – Data Collection Framework for Mobile Crowd Sensing Systems

in terms of the energy spent by the devices. At the same time, the proposed
algorithm maximizes the utility of samples the collector receives. To this end, the
collector broadcasts beacons to the participants to inform them about the most
urgent samples to collect. This is defined as the data collection utility, which can
also be seen as the quality of contributed information for the system guaranteed
by the algorithm. Indeed, the cloud collector broadcasts periodically messages
to the users indicating which type and the amount of data required to capture a
physical phenomena while ensuring a minimum level of accuracy in the process.

The participants determine whether they can contribute such data on the basis
of their sensing potential, which is the cost of sensing and reporting. To maximize
the utility of data collection, it is fundamental to take into account the environmental
context of the devices [149, 150]. For example, capturing a picture while the
smartphone is in a pocket does not bring any utility for the MCS system. Users
sense and report data only when there is match between the smartphone sensing
potential and the data collection utility, as shown in Fig. 4.1. The following sections
describe the data collection policies that overcome such issues and validate the
proposed algorithm both analytically and through simulations. Table 4.1 lists a
description of symbols used in the following sections.

sp1 sp2 sp3 sp4 sp5 sp6 sp7

da1 da2 da3 da4 da5 da6 da7

X X X

Data Collector Utility

Smartphone Sensing Potential

Figure 4.1: Matching between the smartphone sensing potential and the data
collection utility

4.1 Data Collection Policies
The mobile devices decide to perform sensing and reporting operations indepen-
dently one each other on the basis of the data collection utility da

s , the smartphone
sensing potential sps and the environmental context of the device Cs . The latter param-
eters are determined locally at the mobile devices while the former is computed by
the cloud collector. The objectives of the entities, the cloud collector and the crowd,
may be in contrast. For example, the collector may require samples from a given
sensor while all the participants in that area may want to preserve their resources.
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Table 4.1: Symbols list and description

Symbol Description
s Sensor s
S Set of sensors
a Monitored area
A Set of monitored areas
t Timeslot
da

s Data collection utility for sensor s in area a
sps Smartphone sensing potential for sensor s
Cs Environmental context for sensor s

N a
s |t

Number of samples generated by sen-
sor s in timeslot t in area a

Es Energy of sensor s
Ec

s Energy spent for sensing of sensor s
Us Utilization context for sensor s
Er

s Energy spent by sensor s for reporting
PW Power consumption of WiFi
PL Power consumption of LTE
lx
s Last sensed value

lr
s Last reported value
εs Threshold for deciding if report last sample
B Level of Battery
D Amount of the reported data
Ds Amount of the reported data from sensor s
DW

s Amount of the reported data via WiFi
DL

s Amount of the reported data via LTE
δ Threshold for making sensing and reporting decisions
δb Contribution of the level of battery to δ
δd Contribution of the amount of reported data to δ

To compare the previous parameters with a threshold δ, two different data
collection policies are defined: a collector-friendly policy and a smartphone-friendly
one. The former takes into consideration the data collection utility with higher
priority while in the second policy the costs for sensing and reporting assume
more relevance.
Collector-friendly Policy (CFP) The policy is defined as follows:

[Cs · γ · sps] + (1 − γ) · da
s > δ, (4.1)
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where γ is a coefficient that can assume real values in the range [0,1]. High values
of γ give more relevance to the smartphone sensing potential, while low values of γ
make dominant the data collection utility term.
Smartphone-friendly Policy (SFP) The policy is defined as follows:

Cs · [γ · sps + (1 − γ) · da
s ] > δ. (4.2)

With respect to the collector-friendly policy defined in (4.1), when the environmental
context is unfavorable, i.e. Cs � 0, the devices never perform sensing and reporting.
Indeed, under such hypothesis the utility of the samples would be very low for the
collector. As a result, the policy prevents the devices to perform useless operations
to save resources. On the other hand, the adoption of the collector-friendly policy
wouldmake the devices to perform sensing and reporting even if the environmental
context is unfavorable. This entails the collector receiving much more data and
can be useful to monitor phenomena that require many samples to be captured or
when little amount of information comes from a given area.

4.2 Data Collection Utility at Cloud Collector
Following the Sensing-as-a-Service (S2aaS) paradigm, the data collector is located
in the cloud (see Fig 3.1). S2aaS paradigm has recently gained significant attention
from the research community [151, 152, 153]. Initially, the users perform a request
to the cloud for sensing data in a given area. The sensors and the mobile devices
located in that area accomplish the request and collect the information. Then, the
information is delivered to the cloud, stored and made available to the cloud users.
Such model perfectly suits MCS and it is of special interest when applied to smart
cities [154].

On the basis of the requests for sensing that are assumed to be known in
advance, the cloud collector decides which samples need to be collected. Each
request can come from different applications and requires samples from different
location areas and type of sensors. As a result, it is possible to identify a utility
function in the data collection process that typically exhibits the so called marginal
effect [155]. Areas with higher user participation will satisfy quickly the demand of
samples leading to low utility in gathering more information. On the other hand,
having few samples at disposal makes the need for data urgent and the utility of
such data becomes high. However, the marginal effect in data collection applies
only in the case a given phenomena has to be captured once. When the objective is
to perform continuous monitoring, more samples become at disposal in the cloud
collector, the higher the accuracy in mapping the phenomena.

To define the data collection utility, the monitored area is assumed to be parti-
tioned in a set of areasA. In each area a ∈ A, the mobile devices generate samples
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from a different set of sensors S. The Exponential Weighted Moving Average filter
(EWMA) describes the average number of samples N

a
s |t generated from the sensor

s in the area a during the timeslot t:

N
a
s |t � σ · N

a
s |t + (1 − σ) · N

a
s−1 |t , (4.3)

where N a
s |t corresponds to the number of samples of sensor s in timeslot t in area

a and N
a
s |t−1 is the previous value. The parameter σ is the exponential weighting

coefficient. High values of σ limit the contribution of older values.
When N

a
s |t assumes high values, the cloud collector has received many samples.

As a consequence, the data collection utility is low. On the other hand, low values
of N

a
s |t indicate the need for more samples and the data collection utility is high.

These considerations suggest that the data collection utility can be defined as a
sigmoid function (shown in Fig. 4.3):

da
s �

1

1 + e−
ϕs
ρs ·(−N

a
s |t+(1− ρs

2 ))
, (4.4)

where ϕs and 1− ρs/2 represent the incline and the center of the curve respectively.
The data collection utility can assume real values in the range [0,1].

The cloud collector computes da
s per area a and sensor s. Then, it informs the

participants in each area a by means of beacon messages transmitted periodically.

4.3 Smartphone Sensing Potential
This section models the potential of the mobile devices in performing sensing.
Describing the smartphone sensing potential implies twoparameters: the energy spent
for both sensing and reporting operations and the utilization context. Taking into
account both parameters it is fundamental to characterize the utility in collecting
data from the user point of view. Understanding the environmental context of the
devices involves utilization of always-on sensors such as the accelerometer, which
obviously has a cost in terms of energy. However, having such a knowledge helps
to avoid performing more costly and not useful sensing operations, such as taking
photo when the smartphone is in a pocket.

The energy the mobile devices spend to contribute data can be attributed to
sensing and reporting operations. For each sensor s, the energy cost Es is therefore
defined as:

Es � Ec
s + Er

s . (4.5)
For sensing, the contribution Ec

s has to be taken into account only if the sensor s is
not already in use by another application. In such a case, similarly to [156], the
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energy spent by sensor s is equal to zero. This behavior is called utilization context
of s, Us . As a result, Ec

s is defined as follows:

Ec
s � E

c
s ·Us , (4.6)

where E
c
s is the actual energy spent by sensor s and the utilization context Us is

defined as:

Us �



0, if the sensor s is used by another application;
1, otherwise.

(4.7)

Data reporting consists in delivering the information gathered from the set
sensor S to the cloud collector. Reporting is assumed to take place always at
the beginning of the timeslot t for the samples collected during timeslot t − 1.
The contribution Er

s to the energy cost Es depends on the technology used for
communication with the cloud. Cellular (LTE) and WiFi technologies are both
taken into account. Er

s is defined as follows:

Er
s �




EW , if WiFi or both WiFi and LTE are on;
EL1 , if WiFi is off and LTE is idle state;
EL2 , if WiFi is off LTE is connected state.

(4.8)

Most of the operating systems for smartphones, including Android and iOS,
already make preference to WiFi over cellular connectivity for data transmission
when both are available. Indeed, WiFi is much more energy efficient if compared
to LTE [157] and users do not consume the data plan they pay to the cellular
operators [158]. As a result, when both WiFi and LTE interfaces are active, WiFi is
preferred. To model the power consumption for data transmission with WiFi PW ,
it is used the model proposed in [159]:

PW
� ρid + PW

tx + Pxg(λg), (4.9)

The energy EW spent during the transmission time Ttx is defined as:

EW
�

∫ Ttx

0
PW

tx dt . (4.10)

On the other hand, to model the energy consumption of LTE it is taken into account
the RRC state machine and the simplified model proposed in [160], in which
there are different energy terms related to the state of the machine. If the User
Equipment (UE) is in idle state and it sends data, before transmitting there is a
promotion state from idle to connected and after the transmission there is a tail
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before coming back to idle. The energy consumption for the smartphone due to
the reporting is:

EL1 � PP · TP + PL
tx · Ttx + PL

tx · DRXIT + PDRX · RRCIT, (4.11)

where TP and PP are the promotion delay and power, Ttx and Ptx are time and power
transmission, DRXIT is the DRX Inactivity Timer, PDRX is the power consumed
when the UE is in one of the two DRX modes and RRCIT is the RRC Inactivity
Timer. Otherwise, if the smartphone is already connected to LTE and transmitting,
the energy consumption is given only by the transmission contribute:

EL2 �

∫ Ttx

0
PL

tx dt . (4.12)

The power consumption for transmitted data Ptx is given by the model of [157]:

PL
tx � αul · Tul + β, (4.13)

where Tul represents the uplink throughput and the parameters αul and β can be
found in the linear model proposed in [157].

In order to maximize energy savings and data collection utility at the cloud
collector, reporting is not performed in case the value of the last sensed sample lx

s
is similar to the last reported value lr

s for sensor s. Specifically:

|lx
s − lr

s | < ε, (4.14)

where ε is a threshold defining the similarity between the two values.
This operation can provide significant energy savings especially for sensors

generating samples with values that do not exhibit high variability. For example,
the sensors used for meteorological measurements like the temperature and
humidity sensor and the barometer. When the variation between the values of
samples generated from the same sensor s in subsequent timeslots remains little,
the utility in reporting the last sample is low. As a consequence, to maximize the
utility at the cloud collector and save energy, the algorithms prevents reporting
and stops the sensing process. This procedure is modeled defining the timeslot in
which the next sample will be collected as:

tnext �



t + i · n , if |lx
s − lr

s | < ε;
t + 1, otherwise.

(4.15)

The parameter n is a fixed number of timeslot to skip and i is the number of times
the variation between the values of the samples remains below ε. In case the
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Timeslot

Values

Figure 4.2: Example for sensed and reported samples

decision is to not report, the cost of reporting Er
s assumes values equal to zero. An

example is shown in Fig.4.2.
The smartphone sensing potential sps for each sensor s is function of the energy

cost Es . Similarly to the data collection utility, the relation is described as a sigmoid
function (shown in Fig. 4.3):

sps �
1

1 + e−
ζs
θs ·(−Es+(1− θs

2 ))
, (4.16)

where ζs and 1− θs/2 represent the incline and the center of the curve respectively.
The smartphone sensing potential can assume real values in the range [0,1].
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Figure 4.3: Data Collection Utility and Smartphone Sensing Potential

4.4 Profiling the Environmental Context
The environmental context Cs of sensor s is defined as the set of facts and circum-
stances happening around the mobile device. Note that such a definition not
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only takes into account the location of the mobile device (e.g., lying on a table,
in a pocket, in a hand, indoor or outdoor), but also the relation with the user
movement (e.g., stationary or on the move, with the possibility to recognize the
type of movement thanks to several movement pattern). Context awareness is
typically performedwith always-on sensors, such as the accelerometer that enables
recognition of movement patterns (e.g. walking or running [25]) and actions (e.g.
driving, riding a car or sitting [27]). Estimating the environmental context is not
simple, although it exists practical solutions [161]. However, its knowledge is
crucial to avoid performing useless sensing operations that impact on the overall
energy budget without providing any benefit for the collector, such as taking photo
when the smartphone is in a pocket.

The utility of each sample is defined according to the environmental context.
For the sake of simplicity and without loss of generality, Cs assumes binary values:

Cs �



1 if the sample brings some utility in the process;
0 otherwise.

(4.17)

In the proposed framework the collector builds a table for each sensor at the
beginning of the collecting process. The table is built according to the contexts
in which the collector is interested in and it is sent to the smartphones in each
monitored area at the beginning of the sensing process. For instance, if the data
collector needs the position of a device, the GPS will be useful only outdoor. It
follows that Cs will be set to 1 for outdoor environments and set to 0 for indoor
environments. Consequently, when smartphones receive the table at the beginning
of the sensing process, they know case by case how to set the bit corresponding to Cs
according to the environmental context they reveal. Each time the environmental
context of the mobile devices changes, the smartphones sense it and assign a new
binary value to Cs . The table containing context profiles the collector broadcasts to
the users can be updated anytime. For example, this happens when the collector
changes sensing task, e.g. from air monitoring to gluten detection.

4.5 Threshold for Sensing and Reporting
Sensing and reporting operations occur when the parameters data collection utility
and smartphone sensing potential are greater than a threshold δ. This translates in
having the mobile devices sustaining a cost that produces useful data for the cloud
collector. In addition, this mechanism can be tuned to prevent users to contribute
too much or too little. The threshold δ becomes therefore a key parameter and
needs to be set properly. To this end, it is considered the actual level of the battery of
the devices B and the amount of reported data D the devices have already contributed
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to the system. The two parameter define the historical cost the devices have
sustained. The parameter δ is defined as follows:

δ �




1, if δd � 1| |δb � 1;
f (δB , δd), otherwise;

(4.18)

where all the parameters δ, δb and δd are real values in the range [0,1]. Specifically,
both δb and δd are function of B and D respectively. Having any of the two
parameters assuming values equal to 1 makes the threshold δ to become 1 as well.
As a result, the devices will stop contributing to the system. The function f can
be chosen arbitrarily. In this thesis, for simplicity it is assumed to provide equal
weight to δb and δd :

f (δb , δd) �
δb + δd

2 . (4.19)

Level of Battery The level of battery B is remaining charge of the device, where
0 ≤ B ≤ 100. High values of B denotes a high level of charge and the device
can contribute data from its sensors. On the other hand, when the battery is
almost empty the users would like to preserve the remaining resources. These
considerations suggests that the relation between B and δb follows a negative
exponential law. As a result, low values of B will make δb to assume values close
to 1. In addition, Bmin is defined as the minimum level of the battery under which
the device stops contributing. Note that 0 ≤ Bmin < B. As a consequence, δb is
defined as follows (as shown in Fig. 4.4):

δB �




αλ·b , Bmin 6 b < 100;
0, otherwise.

(4.20)

The parameter α can assume arbitrary real values between [0,1] and λ is always
greater than 1. Proper setting of the parameter Bmin plays a crucial role. Values of
Bmin close to B lead the device to contribute little amount of data. On the other
hand, it will make the device to contribute more.

Amount of Reported Data The amount of reported data D is total amount of data
contributed by the set of sensors S of a single device:

D �

∑
s∈S

Ds . (4.21)

Specifically, the contribution of data delivered using WiFi (DW
s ) and LTE (DL

s ) is
considered:

Ds � DW
s + DL

s . (4.22)
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Figure 4.4: Contribution δb of the level of battery to δ

The more data the device contributes, the higher the values parameter δd assumes.
As a result, the devices that have already delivered a significant amount of data
to the cloud collector in the past contribute further only if it is necessary. On
the other hand, low values of the parameter δd will enforce the contribution of
the devices that have provided little contribution to the system. As a result, the
relation between D and δd is modeled as follows (as shown in Fig. 4.5):

δd �




1, if D ≥ Dmax;

log
(
1 +

D
Dmax

)
, otherwise;

(4.23)

where Dmax is the maximum amount of data each device can deliver. This
parameter can be tuned by the users periodically.

D

δD

0

1

Dmax

Figure 4.5: Contribution δd of the amount of reported data to δ
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Chapter 5

Performance Evaluation

This chapter illustrates the performance evaluation of the proposed framework
by providing an analytical study. The following sections present the set-up of
the evaluation and the results, which assess the amount of data generated by the
mobile devices and the energy consumed for sensing and reporting.

5.1 Evaluation Set-up
For the evaluation, four users are considered and each of them is equipped with
one device only. The devices have different level of remaining battery charge: 80%,
100%, 10% and 50%. The battery charge is one of the parameters affecting the
threshold δ for sensing and reporting (parameter δb). Recalling equation (4.20),
to compute δb it is set α � 0.7 and λ � 10. The other parameter, δd , corresponds
to the amount of previous reported data and is set to 0 for all the users at the
beginning of the evaluation. The evaluation period consists of 600 timeslots and
each timeslot corresponds to 1 s.

Each mobile device generates data from the set of sensors S, which includes
the accelerometer, the temperature and the pressure sensor and transmits the
information over WiFi. Without loss of generality, having only one communication
technology makes easy the understanding of the properties of the data collection
framework. For the sensing equipment, real sensors implemented in current
smartphones and tablets are taken into account. Specifically, the FXOS8700CQ
3-axis linear accelerometer from Freescale Semiconductor and the BMP280 from
Bosch, which is a digital pressure and temperature sensor. Equation (4.9) describes
WiFi power consumption spent by the devices for communication. Table 5.1
presents the detailed information on communication and the parameters.

For the sake of simplicity, all the users obtain the same profiles for the environ-
mental context from the collector: C � {1.0, 1.0, 1.0}. For each timeslot, each user
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Figure 5.1: Amount of data collected per user from accelerometer readings

compares the current context with the profiles. The current context ct is a random
variable generated in each timeslot t and it follows an exponential distribution
with rate 1.25. According to C, values of ct close to 1.0 correspond in having the
smartphone performing sensing in favorable conditions. On the other hand, values
of ct close to 0.0 correspond to samples generated in unfavorable conditions and
therefore such data does not bring any utility from the collector point of view.
The utilization context Us is modeled as a random variable that assumes values
uniformly distributed in the range [0,1] and is generated during each timeslot for
each user device.
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Table 5.1: Sensor and communication equipment parameters used for performance
evaluation (a) Sensor

Sensor Parameter Value Unit
Accelerometer Sample rate 50 Hz

Sample size 12 Bits
Current 35 µA

Temperature Sample rate 182 Hz
Sample size 16 Bits
Current 182 µA

Pressure Sample rate 157 Hz
Sample size 16 Bits
Current 423.9 µA

(b) Communication

Symbol Value Unit Description
ρid 3.68 W Energy in idle mode
ρtx 0.37 W Transmission power
ρrx 0.31 W Reception power
λr 1000 fps Rate of received packets
λg 1000 fps Rate of generation of packets
γxr 0.09 · 10−3 J Energy to elaborate a received packet
γx g 0.11 · 10−3 J Energy to elaborate a generated packet

5.2 Results
The objective of the evaluation is in assessing the amount of data generated and
the energy consumption experienced for performing sensing and reporting. In
addition, this analysis studies the overall performance of the framework. To this
end, it is evaluated the impact of the parameters such as δ, the threshold for sensing
and reporting and γ the coefficient balancing the impact of the data collection
utility and the smartphone sensing potential.

Having set γ � 0.5, Fig. 5.1 illustrates the amount of data the four users generates
from accelerometer readings. The other sensors exhibit a similar behavior and
for space reasons the results are not shown. The performance of both CFP and
SFP policies are investigated for the entire evaluation period. As it is possible to
notice, the CFP policy makes the users to contribute higher amounts data than the
SFP policy. This behavior is expected as the SFP is tailored to perform operations
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Figure 5.2: Total amount of collected data

only when the environmental context guarantees the devices to generate useful
information to the system. It is interesting to notice that User 3 contributes nearly
the same amount of data with both policies. Being the remaining charge at the
beginning of the simulation low, the threshold δ assumes values close to one.
Having set γ � 0.5 the data collection utility and the smartphone sensing potential
accounts in the same manner in order to take sensing and reporting decisions.
As a result, User 3 provides a contribution to the system only when the collector
has a high interest in obtaining samples from the user. For all the users but User
3, the amount of contributed data has a sharp increase that becomes smoother
towards the end of the evaluation period. The motivation is twofold. On one side,
having obtained enough samples the utility at the collector become smaller (data
collection utility factor). On the other hand, the remaining capacities of the devices
decrease with time while the amount of already reported data increase. As a result
it becomes more difficult to meet the threshold δ and this lowers the contribution
rate.

Fig. 5.2 analyzes the total amount of collected data. In particular, Fig. 5.2(a)
compares the amount of information each sensor generates. Being proportional
to the sampling frequency of each sensor, the accelerometer generates the lower
amount of data in comparison with the temperature and pressure sensor. Low
values of sampling frequencymake the difference between the amount of generated
data by the to policies to be small. On the other hand, with the increase of
the sampling frequency such difference increases. Obviously the amount data
generated is proportional to the sampling rate and resolution size, being the
temperature sensor having the highest rate and resolution size (see Table 5.1(a)).
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Fig. 5.2(b) provides a comparison between the total amount of data generated by
the two policies and when our framework is not utilized. Each curve denotes the
amount of data generated by the three sensors together. As expected the amount
of data generated without using the proposed framework is higher than having
active either CFP or SFP. This is because the devices perform sensing and reporting
even when the environmental context ct during each timeslot t is unfavorable.
As a result, many of the generated samples do not bring any additional utility
to the system. The SFP makes the user to only perform operations when the
environmental context is favorable and for this reason generates the lowest amount
of data. On the other hand, the CFP is more flexible and allows the devices to
sense and report data even in case the environmental context is unfavorable, but
the data collection utility and the smartphone sensing potential conditions should
always be met. As a consequence, the amount of data generated by means of the
CFP is significantly lower than the case when the framework is not utilized.
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Figure 5.3: Energy consumption for the data collection policies

Fig. 5.4 provides a comparison between the total amount of data generated by
the two policies and when the framework is not utilized. Each curve denotes the
amount of data generated by the three sensors together. As expected the amount
of data generated without using the proposed framework is higher than having
active either CFP or SFP. This is because the devices perform sensing and reporting
even when the surrounding context ct during each timeslot t is unfavorable. As a
result, many of the generated samples do not bring any additional utility to the
system. The SFP makes the user to only perform operations when the surrounding
context is favorable and for this reason generates the lowest amount of data. On
the other hand, the CFP is more flexible and allows the devices to sense and report
data even in case the surrounding context is unfavorable, but the data collection
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utility and the smartphone sensing potential conditions should always be met. As
a consequence, the amount of data generated by means of the CFP is significantly
lower than the case when the framework is not utilized.
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Figure 5.4: Amount of data collected with different policies

Fig. 5.3 compares the energy consumption spent by each user while adopting
the CFP and SFP policies. The results are obtained at the end of the evaluation
period of 600 timeslots. As expected, User 3 consumes significantly less energy
than the other users. Indeed, being at the beginning of the evaluation period
her remaining charge of the battery only 10%, the framework tries to limit its
contribution. Surprisingly, both CFP and SFP provide a nearly equal energy
consumption. Thus, under the current setting, the frameworkmakes the users with
low remaining charge to contribute data only when it is sure it brings utility to the
collector. The energy consumption of the other users exhibits a similar behavior,
being the difference between Users 1 and 2 and User 4 as low as 0.6 J. It should
be noted that for a smartphone equipped with a 2550mAh and a 3.85V battery
such as the Samsung Galaxy s6, the total energy at disposal is as of 35343 J. As a
consequence, it is possible to conclude that contributing data opportunistically to a
MCS system does not affect dramatically the performance of today mobile devices.
For example, the energy consumption a 10 minutes period is as low as 12 J.

Having evaluated the amount of data contributed and the cost to generate
such information, now the study is about the impact of the parameters δ and γ
on the overall performance. Fig. 5.5 analyzes the behavior of the threshold δ that
enables the device to decide whether to perform sensing and reporting. For the
analysis, the same setting used to generate the previous results is kept. Fig. 5.5(a)
shows the values δ assumes during the evaluation period for all the users, having

65



5 – Performance Evaluation

set the CFP policy. For all the users, δ increases with time. While contributing
data, from one hand the users spend energy, having an impact on the remaining
charge of the battery (parameter δb). On the other hand, delivering data increases
the amount of already reported data (parameter δd). As expected, for User 3
the threshold δ is always higher than for the other users because her remaining
battery charge is the lowest. It is interesting to notice that the curves for Users 1
and 2 are close one each other. The reason is twofold. First, the two users have
a similar amount of remaining battery charge at the beginning of the evaluation
period (see Table 5.1(a)). Moreover, they contribute nearly the same amount of
data, see Fig. 5.1. Fig. 5.5(b) compares the values δ assumes at the end of the
evaluation period for both policies CFP and SFP. Similarly to the results obtained
for energy consumption (see Fig. 5.3), for all the users but User 3 the difference
between the values δ assumes with the two policies remain constant. For User 3,
the difference is small. Intuitively, higher values of δ correspond in having low
energy consumption.
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Figure 5.5: Analysis of threshold δ

Fig. 5.6 studies the impact of the parameter γ on the performance of the
framework. Recalling (4.1) and (4.2), the parameter γ defines the weight of the
data collection utility and the smartphone sensing potential for taking decisions to
perform sensing and reporting. Fig. 5.6(a) and Fig. 5.6(b) shows respectively the
amount of data generated and energy the device consume for both CFP and SFP
policies with increasing values of γ. Low values of γ give more importance to the
data collection utility, hence the devices contribute data even if they experience a
high energy cost as Fig. 5.6(a) highlights. On the other side, with the increase of
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the parameter γ, the framework is tailored to pay more attention to the potential
the device have in perform sensing. This translates in a better energy management
at the cost of delivering a lower amount of data. For the CFP policy it is also
possible to notice that the energy cost is smoothly increasing for values of γ below
0.5 (see Fig. 5.6(a)) although the amount of data generated remains almost constant
(see Fig. 5.6(b)). This energy consumption should be attributed to the utilization
context Us . When the parameter γ assumes values higher than 0.6 both the energy
and the amount of collected data have a sharp decrease. As the relevance of the
data collection utility decreases, the smartphone sensing potential factor becomes
crucial in order to take sensing and reporting decisions. To better analyze such
decrease, the plot in Fig. 5.6(c) shows the amount of data User 4 generates for
values of γ > 0.6. Similarly to Fig. 5.1, in all the curves the increase is at first
sharp and then becomes smooth. The higher the values γ assumes, the sooner the
change of slope and the lower the amount of data collected, which in turns leads
to energy savings.
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Chapter 6

CrowdSenSim

CrowdSenSim simulates the process of data collection in a large scale scenario with
thousands of participants contributing data in a real city environment. This custom
simulator is a discrete-event simulator where the participants of a MCS system
contribute data to the collector opportunistically. The objectives of CrowdSenSim
consist in measuring the costs the devices experience and determining the amount
of contributed data. Furthermore, the simulator is general purpose, so any
data collection framework can exploit it for its purposes. Having evaluated the
performance of the framework proposed in this thesis analytically, the simulator
conducts experiments to investigate the effectiveness of the framework in a large
scale scenario. The objective is to assess the efficiency of the algorithm taking
into account a large number of participants contributing data in a real city. The
following sections present the detailed functionality along with the simulation
scenario and results.

6.1 Description and Set-up of the Simulator
The key idea of the simulator is to consider a real city environment and to collect
data from thousands of users that walk all around the city. The salient features are
as follows:

• The participants move in a realistic city environment.

• The simulator supports pedestrian mobility.

• The data generation process uses latest generation sensors commonly avail-
able in mobile devices.
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• Mobile devices report the collected data connecting to LTE base station and
WiFi hotspots. The real coordinates of the antennas (latitude, longitude and
altitude) are used to calculate the distance from users.

Each mobile device generates data opportunistically from a set of sensors
including accelerometer, temperature and pressure sensor and transmits data
over WiFi. The sensing equipment is the real equipment implemented in current
smartphones and tablets. Specifically, this study considers the FXOS8700CQ 3-axis
linear accelerometer from Freescale Semiconductor and the BMP280 from Bosch,
which is a digital pressure and temperature sensor. Equation (4.9) describes WiFi
power consumption spent by the devices for communication. Table 5.1 presents
the detailed information of the simulation parameters.

The center of Luxembourg City was selected for the simulations. It covers an
area of 1.11 km2 and is the home of many national and international institutional
buildings.

Pedestrian Mobility
By means of DigiPoint [162] from Zonum Solutions 1, it is possible to derive
information about the streets of the city in the form of a set of coordinates C
containing <latitude, longitude, altitude>. The set of coordinates C taken into
account is shown in the map of Luxembourg city center in Fig. 6.1. The participants
move along the streets of the city, being their original location a randomly assigned
coordinate in the set C. The number of participants ranges from 100 to a maximum
of 20 000, being the population of Luxembourg city of 107 340 inhabitants as of end
2014. For the sake of simplicity, the start time of the walk is uniformly distributed
between 8:00 am and 13:30. Each participant holds one mobile device only and
walks for a period of time that is uniformly distributed between [10,30] minutes
with an average speed uniformly distributed between [1,1.5] m/s. Once the
walk time period expires, the participant stops contributing to the system. This
hypothesis provides a worst case estimation, having the users contributing for a
little period of time only along the day.

Antennas
The antennas are mapped taking into account both LTE towers and WiFi hotspots
in Luxembourg City Center. The position of LTE towers shown in Fig. 6.2 is
taken from OpenSignal [163], which is a source of insight into the coverage and
performance ofMobile Operators worldwide. The data is crowdsourced by users of
the OpenSignal app, downloaded over 15 million times, which constantly monitors
the coverage and performance of their mobile connection.
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Figure 6.1: Map from DigiPoint

The position of WiFi hotspots in Luxembourg city center is taken from WiFi
coverage of HotCity [164] and shown in Fig. 6.3.

6.2 Simulation Results
For evaluation purposes experiments are conducted aiming at assess the amount
of information gathered from the devices and the energy consumption they
experience while contributing data.

Energy Consumption for Sensing and Reporting
To analyze the consumption the device experience the number of participants is
10 000. For a worst case analysis, the devices generate data continuously during
users’ movements.

Fig. 6.4(a) analyzes the user distribution for the energy spent for sensing. On
average, the users spend 374.617 uAh and in the worst case few users experience a
consumption that is nearly double than the average. If compared to the capacity
available in today smartphones (in the order of 2000 mAh), it is possible to conclude
that the energy consumption for sensing is negligible with respect to the energy
spent for communications.
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Figure 6.2: Map of LTE base stations from OpenSignal

Fig. 6.4(b) illustrates the user distribution for the energy spent for communica-
tions. As only WiFi was considered, the shape of the distribution is similar to the
one presented in Fig. 6.4(a).

Amount of Data Collected
To assess the amount of information the device contribute, two types of experiments
are conducted. First, the evaluation considers the amount of data each sensor
generates. Then, the Luxembourg City center is divided into five areas and in
each area it is measured the Sample Distribution (SD). SD is a metric that aims at
assessing the distribution of the samples per area. The objective is to understand
the amount and the variability of the data generation process along the time period
8:00-14:00. For both experiments, the number of participants was 20 000.

Fig. 6.5 shows the amount of data collected with the increase of the number of
participants. The amount of data is proportional to the sampling frequencies of
the three sensors. Recalling that each user only contributes for a little period of
time (10 to 30 minutes), the amount of collected information is remarkable. For
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Figure 6.3: Map of WiFi hotspots from HotCity

example, having 5 000 users would generate 783 MB, 3.71 GB and 3.20 GB for the
accelerometer, temperature and pressure sensors respectively.

Having the knowledge on the amount of data the users can contribute is
important for the applications and to determine the accuracy in mapping a
phenomena. However, to draw more precise conclusions it becomes fundamental
to determine also where and when the samples are generated. For this reason, it is
introduced a new metric called Sample Distribution (SD) to assess the distribution
of the sample generation. SD is measured in sample per meter and is defined as
follows:

SD �
N a

s |t

∆
, (6.1)

where ∆ is the average distance between samples and N a
s |t is the number of samples
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generated (see Table 4.1). The parameter ∆ is defined as follows:

∆ �

∑n
i , j
i≥ j

d(i , j)

n(n − 1)
2

. (6.2)

The term d(i , j) is the distance (in meters) between the location where the samples
i and j were generated.

74



6 – CrowdSenSim

Fig. 6.6 shows graphically the SD in the entire city center for the time period
10:00-10:30. The considers only accelerometer samples. The SD metric weakly
depends on the size of the area. Although being wider than Area 3, a large part
of Area 2 is a public park with a fewer number of streets at user disposal. The
reason is that the SD metric measures the distribution of the samples taking into
account the location where they have been generated, namely a specific coordinate
identified by the triple <latitude, longitude, altitude>. As a consequence, highly
dense areas such as Area 5 exhibits high values of SD.

Area 1: 58.3137 sample/m

Area 2: 30.8808 sample/m

Area 3: 68.5739 sample/m

Area 4: 75.0856 sample/m

Area 5: 108.003 sample/m

23612

0

Time: 10:00-10:30

Figure 6.6: Sample distribution (SD) for 20 000 users moving in the center of
Luxembourg

Fig. 6.7 shows the distribution of SD for all the 5 areas for the entire simulation
period. It is interesting to notice that the lowest values of SD occur for the initial
end final time intervals (8:00-8:30 and 13:30-14:00). Being the user uniformly
distributed between 8:00 am and 13:30 and moving for at maximum 30 minutes,
during the initial and final time interval the number of participants is low.
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8:00-14:00
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Chapter 7

Conclusion and Future Work

This thesis proposes an optimized distributed framework for data collection in
opportunistic MCS systems. The framework aims at minimizing the energy
consumption for the participants in performing sensing and reporting while
maximizing the utility in data collection for the cloud collector. The performance
of the framework is evaluated both analytically and through simulations in a
real urban environment with a large number of participants. The thesis analyzes
the costs the participants experience and the amount of data the system allows
to gather. The analytical results highlight that the major contribution to energy
consumption is attributed to reporting and not sensing. The simulation results
confirm the effectiveness of the proposed approach in a real urban environment
for a large number of participants.

To extend current functionalities of the framework, as future work it is possible
to consider caching policies to buffer samples and queuing policies with different
schedulers to improve the efficiency of data delivery. In other words, the idea is to
include guidelines to implement Quality of Service (QoS) and Age of Information
in MCS systems, considering the utility of the cloud collector for packets generated
from different sensors and their timestamps. Moreover, it would be interesting to
model different environmental contexts (e.g., indoor, outdoor, office, pocket) and
the transitions from one to another one. This objective can be achieved exploiting
HiddenMarkovModels (HMM). For instance, passing from "smarthpone in pocket
and user not moving" to "smartphone outside and user moving", all the data
collection features explained in the taxonomy change.

Furthermore, MCS is a hot research topic and embraces several interesting
research areas. The following list outlines potential future research directions:

• Use of wearable devices to improve smartphone sensing. To analyze these
architectures it is fundamental to take into account task assignment in
coordinated manner between mobile and wearable devices to not overlap.
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Furthemore, energy efficiency is one the most important issues as wearable
devices have a very limited amount of resources and batteries drain quickly.

• Connection with other relevant research areas, as mobile cloud computing, big
data and smart cities. For instance, there are some existing works connected
with cloud computing, but they are more oriented to personal sensing than
crowd (e.g., databases in health care with private sensed data that can be
stored using mobile devices).

• Collaboration between mobile devices and vehicular networks. It exploits
the large availability of embedded sensors in smartphones that cover a huge
areas of users that move in cars, buses, etc. Futhermore, it investigates
communication techniques which efficiently adapt to the highly volatile and
unstable vehicular environment.

• Detection of activities to prevent pedestrian injuries and deaths [165] as
road projects, taking into account the needs of all users of the transportation
system. It is also strictly connected to the huge research area of public safety,
which investigates crimes and natural disasters.

• "Learning" things, like the smart thermometer [166] that automatically adapts
as people habits and season changes, with movement sensor and recording
activity. It permits energy savings and a great impact in developing smart
houses.

• Detection of pollution patterns through machine learning, for gas emission
reduction and citizen healthcare. These algorithms exploit known informa-
tion to recognize specified pollution pattern for environmental monitoring
and propose possible solutions [167].
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