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Abstract—Mobile crowd sensing received significant attention in the recent years and has become a popular paradigm for sensing. It
operates relying on the rich set of built-in sensors equipped in mobile devices, such as smartphones, tablets and wearable devices. To be
effective, mobile crowd sensing systems require a large number of users to contribute data. While several studies focus on developing
efficient incentive mechanisms to foster user participation, data collection policies still require investigation. In this paper, we propose a
novel distributed and sustainable framework for gathering information in cloud-based mobile crowd sensing systems with opportunistic
reporting. The proposed framework minimizes cost of both sensing and reporting, while maximizing the utility of data collection and, as a
result, the quality of contributed information. Analytical and simulation results provide performance evaluation for the proposed framework
by providing a fine-grained analysis on the energy consumed. The simulations, performed in a real urban environment and with a large
number of participants, aim at verifying the performance and scalability of the proposed approach on a large scale under different user
arrival patterns.

Index Terms—Mobile crowd sensing, energy-efficient data collection, opportunistic sensing.
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1 INTRODUCTION

MOBILE crowd sensing (MCS) has become in the recent
years an appealing paradigm for sensing and collect-

ing data. In MCS, users contribute data gathered from sensors
embedded in mobile devices such as smartphones, tablets
and Internet of Things (IoT) devices like wearables. The
information is then delivered to a collector, usually located in
the cloud [1], [2]. The ubiquitous diffusion of mobile devices
and the rich set of built-in sensors they are equipped with,
have been the two main enablers leading to the success
of MCS paradigm. Mobile devices have become essential
for our everyday activities, including business, health-care
and wellbeing, social activities and entertainment [3], [4].
Accelerometer, GPS, camera and microphone are only a rep-
resentative set of sensors commonly available in mobile and
IoT devices. A number of MCS-based applications builds on
multi-sensing capabilities and finds applicability in different
scenarios, including health-care, environmental monitoring,
public safety and intelligent transportation systems such as
traffic monitoring and management [5], [6], [7]. All these
applications suit urban scenarios very well. Indeed, MCS is
projected to be a key solution for smart cities, which aim at
using ICT solutions to improve management and quality of
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everyday life of their citizens [8], [9].
The process of data collection includes a set of steps

necessary to produce data and deliver it to the collector. In
MCS systems, data collection can be either opportunistic or
participatory [5], [6]. The user involvement in opportunistic
sensing systems is minimal or none, which means that the
decisions to perform sensing and report data are application-
or device-driven. On the contrary, participatory sensing
systems rely on active user engagement in the sensing
process. For example, when users can spontaneously decide
to contribute to the system after having received a specific
task. Participatory sensing is tailored to crowd sensing
architectures with a “central intelligence” responsible to
assign tasks to the users, e.g., to ask one user to record a video
in a given area at a given time. Unlike opportunistic sensing
systems, the participatory paradigm imposes a higher cost
on the user in terms of cooperation effort. Having devices or
applications responsible for sensing lowers the burden for
user participation and makes opportunistic sensing ideal for
distributed solutions.

Devising efficient frameworks for data collection is
fundamental. MCS follows a Sensing as a Service (S2aaS)
business model, which makes available to the public data
collected from sensors. Consequently, companies have no
longer the need to acquire an infrastructure to perform a
sensing campaign, but they can exploit existing ones in a
pay-as-you-go basis. Efficiency of S2aaS models is defined in
terms of the revenues obtained and the costs. The organizer
of a sensing campaign, such as a government agency, an
academic institution or business corporation, sustains costs
to recruit and compensate users for their involvement. The
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users sustain costs while contributing data too, i.e., the energy
spent from the batteries for sensing and reporting data and,
eventually, the data subscription plan if cellular connectivity
is used for reporting. In these years, the research community
has put lot of effort in developing incentive mechanisms
to foster user participation [10], [11] and in investigating
privacy issues [12], [13]. While privacy concerns are certainly
a limiting factor, the cost of sensing often defines the level of
user contribution and cost-effective solutions are a powerful
incentive to stimulate user participation [14]. On one hand,
mobile devices are battery constrained and it is important to
use all available energy wisely, i.e., refrain from unnecessary
sensing operations. On the other hand, reporting collected
samples using wireless communication technologies, such as
3G/LTE/4G, WiFi or Bluetooth, affects battery lifetime [15],
[16] and has associated data plan costs.

In this paper, we propose a novel distributed framework
for data collection in opportunistic MCS systems. The
proposed framework aims to minimize the cost of sensing
and reporting by estimating the utility of performing such
operations in a distributed manner, or the sensing potential.
At the same time, the quality of contributed information for
the system is guaranteed by using data collection utility. The
data collector announces estimated utilities by periodically
broadcasting the type and the minimum amount of data
required to capture a physical phenomena, with a given
level of accuracy. To maximize the value of the collected data
to the system at the minimum cost of sensing, the crowd
participants sense and report data when there is a match
between the sensing potential and the data collection utility
feedback the collector provides. A match ensures that the
mobile devices sustain a cost to produce useful data for the
cloud collector. On one hand, the mechanism prevents the
users from contributing excessively, e.g., draining the user
battery completely for continuous use, or contributing too
little. On the other hand, being the framework completely
distributed, each device is responsible to decide the timing
and the duration of the contribution with a corresponding
computing overhead. The synopsis of contributions of this
work is as follows:

• Proposal of a novel distributed and cost-effective
framework for data collection in opportunistic MCS
systems. The framework maximizes quality of sensed
data and minimizes sensing costs of the system and
individual participants.

• Design of a custom simulator to capture crowd
sensing activities in large-scale urban scenarios.

• Performance evaluation of the proposed framework
analytically as well as through simulations.

The rest of the paper is organized as follows. Section 2
presents background on data collection in MCS and mo-
tivates the need for efficient data collection frameworks.
Section 3 proposes a novel framework for data collection
and Section 4 presents performance evaluation and results
obtained from simulations. Finally, Section 5 concludes the
work and outlines future research directions.

Cloud Collector

Crowd

Mobile Devices

LTE

WiFi

Accelerometer Gyroscope Microphone Dual Camera Temperature

Sensors

Fig. 1. Cloud-based MCS system

2 BACKGROUND AND MOTIVATION

In MCS data collection architectures the participants con-
tribute information from mobile devices’ sensors.1 This
information is then delivered to a collector, typically located
in the cloud, for data processing and analysis. The users
deliver collected data using cellular 3G/LTE/4G or WLAN
interfaces. Therefore, it becomes important to understand
and assess the costs of sensing and data reporting for indi-
vidual users as well as data collection capacity of the system,
while maximizing the utility of the collected information.
Fig. 1 illustrates the main elements of the MCS system.

A data collection framework defines the set of steps
necessary to produce and deliver the information from the
participants to the collector. Existing frameworks are all
general-purpose or application-specific. Application-specific
frameworks target only one type of application at the
time. To illustrate with few examples, GasMobile [17] and
NoiseMap [18] allows monitoring air and noise pollution
respectively and DietSense [19] fosters healthy eating by
collecting information on the type and location of consumed
food. On the other hand, the salient feature of general-
purpose frameworks is the capability of serving many
applications at the same time. Examples of general-purpose
frameworks are CARDAP [20], Medusa [21], BLISS [22],
EffSense [23] and Honeybee [24].

CARDAP [20] is a general-purpose framework which en-
ables efficient data analytics performed in a distributed fash-
ion in fog computing platforms. The fog allows CARDAP to
extend and augment functionality of a previously proposed
general-purpose framework called CAROMM [25]. Many
research works have focused on participatory frameworks.
BLISS [22] is an online learning algorithm for data collection,
where collector assigns tasks having a limited budget at
disposal for rewarding users. It assumes a certain minimum
number of participants who are actively engaged in sensing,
while the quality of contributed data can vary. Liu et al. [26]
propose an efficient user selection method for participatory
type of mobile crowd sensing. The users are dynamically
selected on the basis of their potential and willingness to
contribute data. The potential for contribution is computed
taking into account the amount of energy remaining at their
mobile devices. Tasks are assigned in order to minimize

1. In the remaining part of the paper, we use terms crowd, participants
and users interchangeably.
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the rejection rate, i.e., the probability that a user refuses to
accomplish the assigned task. Wang et al. [23] propose an
energy-efficient algorithm for uploading the sensed data. It
groups users into two categories. In the first category, the
users pay for the data they consume to the operators and their
goal is to minimize the energy cost during data uploading. In
contrast, the users belonging to the second category aim
to minimize the cost of data uploading exploiting free-
of-charge networks such as WiFi or Bluetooth. Similar to
Piggyback CrowdSensing [14], data uploading is performed
when the user places voice calls. To balance the workload
among the participants while maximizing the utility of data
collection, in [27] the authors propose a Nash bargaining
approach where two objectives, such as load distribution
and utility maximization, are considered as two cooperative
players in the game. Fernando et al. [24] propose Honeybee,
which is a general-purpose framework where users exploit
their experience in task classification and share computing
resources.

The participatory way of sensing, implemented by the
aforementioned frameworks, has the disadvantage of explic-
itly requiring users to perform certain tasks, which may
be unrealistic in many MCS systems. The opportunistic
approach to sensing overcomes this limitation and avoids
sending explicit requests to perform actions to the users.
Hassani et al. [28] proposed Context-Aware Task Allocation
(CATA), which is a framework for opportunistic MCS sys-
tems allocating tasks to users through an recruitment policy.
The policy aims at selecting most appropriate users to fulfill
sensing by determining similarities between the participants
and the tasks. The policy considers energy consumption
of sensing and data delivery operations to determine the
eligibility of the participants, similarly to [29]. Moreover, this
policy protects also privacy, e.g., the platform never asks the
users to reveal sensible information such as user location.
Han et al. [30] propose an opportunistic online distributed
algorithm allowing devices to make decisions whether to
perform sensing through network optimization techniques
and schedule the distribution of correlated tasks among the
smartphones. In addition, the algorithm maximizes utility of
the sensed data while having a constrained budget cost.

Assessing the quality of collected data is important
in sensor networks [31]. For MCS systems, Di Stefano et
al. [32] have proposed a non-markovian stochastic Petri net
formulation to evaluate the performance of MCS systems
assessing Quality of Service (QoS) metrics. However, the
quality of contributed information itself is not taken into
account.

In this paper we propose a general-purpose framework
for data collection in opportunistic cloud-based MCS sys-
tems. Unlike other proposals that focus on participatory
systems [22], [23], [26], the proposed solution is for oppor-
tunistic architectures where the users do not receive specific
tasks to accomplish. Instead, the mobile devices decide to
perform sensing and reporting on the basis of the energy cost,
the environmental context and a feedback from the cloud
collector to guarantee quality of contributed information. For
example, if for smartphones s1 and s2 the cost of sensing
and reporting is high, s1 can decide to remain idle and save
energy if its samples do not bring utility for the collector,
while s2 can contribute if its samples bring high utility for

TABLE 1
Symbols list and description

Symbol Description

s Sensor s
S Set of sensors
a Monitored area
A Set of monitored areas
t Timeslot

das Data collection utility for sensor s in area a
sps Smartphone sensing potential for sensor s
Cs Environmental context for sensor s
Na

s |t
Number of samples generated by sensor s in timeslot t
in area a

Es Energy spent by sensor s
Ec

s Energy spent by sensor s for sensing
Us Utilization context for sensor s
Er

s Energy spent by sensor s for reporting
PW Power consumption of WiFi
PL Power consumption of LTE

B Remaining battery charge
D Amount of the reported data
Ds Amount of the reported data from sensor s
DW

s Amount of the reported data via WiFi
DL

s Amount of the reported data via LTE
δ Threshold for making sensing and reporting decisions
δb Contribution of the level of battery to δ
δd Contribution of the amount of reported data to δ

the collector. Consequently, similarly to [30], these decisions
are taken in a distributed manner, avoiding the need for
a central intelligence that selects participants and assigns
sensing tasks to them.

3 DATA COLLECTION FRAMEWORK

Data collection in cloud-based opportunistic MCS systems
must be cost-effective for participants and minimize the
energy they spend while sensing and reporting. In addition
to the efficiency, the proposed data collection framework
ensures system performance by maximizing utility of the
collected samples. To achieve this objective, the data collector
periodically broadcasts information about the most urgently
needed samples, defined as the data collection utility. Then all
participants can determine whether they can contribute the
requested data taking into account their cost of sensing and
reporting and on the basis of the environmental context [33],
[34]. For example, capturing a picture while the smartphone
is in a pocket does not bring any utility for the MCS system.
Table 1 lists description of symbols used in the following
sections.

3.1 Data Collection Policies
The mobile devices decide to perform sensing and reporting
independently one from another one. The decisions occur on
the basis of the data collection utility das , the smartphone sensing
potential sps, the environmental context of the device Cs and a
threshold δ which defines the amount of contribution each
participant provides. The framework operates in distributed
fashion because each device is responsible to locally compute
all the parameters necessary to determine whether to partici-
pate to the sensing process with the sole exception of das . The
derivation of the parameters das , sps, Cs and δ is illustrated
in more details respectively in Subsection 3.2, Subsection 3.3,
Subsection 3.4, and Subsection 3.5.
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The cloud collector and system participants may have
contrary objectives. For example, the collector may require
samples from the temperature sensor in a given area, while
the participants of that area may be reluctant to contribute
data with the goal of preserving their resources. To unify
and resolve contradictions, the framework specifies two
different data collection policies, a collector-friendly policy and
a smartphone-friendly policy. The former puts more emphasis
and prioritizes the data collection utility. The latter policy
prevents sensing operations when the environmental context
is unfavorable with an objective of saving battery power.

Collector-friendly Policy (CFP): The policy is formally
defined as follows:

[Cs · γ · sps] + (1− γ) · das > δ, (1)

where γ is a balancing coefficient which assumes real values
in the range [0, 1]. The parameter γ is computed by the
collector and broadcasted to the participants. High values
of γ give more relevance to the smartphone sensing potential,
while low values of γ make the data collection utility term
dominant. When the context is unfavorable (Cs = 0), the
smartphones can still sense and report data with the CFP
policy. Indeed, they receive feedback on das from the collector
and compute ((1 − γ) · das), which is the contribution of
the data collection utility to the scoring function. When
the contribution is above δ, the smartphone performs both
sensing and reporting.

Smartphone-friendly Policy (SFP): The policy is defined as
follows:

Cs · [γ · sps + (1− γ) · das ] > δ. (2)

With respect to the collector-friendly policy defined in (1),
when the environmental context is unfavorable, the devices
never perform sensing and reporting, assuming the utility of
such samples would be low for the collector. Unlike (1), when
Cs = 0 the contribution given by the first member of (2) is
never above the threshold δ. As a consequence, SFP prevents
the devices of performing useless operations and allows
to conserve resources. On the other hand, adoption of the
collector-friendly policy would make the devices to perform
sensing and reporting even if the environmental context is
unfavorable. As a result, the collector receives significantly
more data. The CFP can be employed to monitor phenomena
that require many samples to be captured for long time
periods or to boost contribution from areas that did not
contributed yet enough information.

3.2 Data Collection Utility
Following the Sensing-as-a-Service (S2aaS) paradigm, which
recently gained significant attention from the research com-
munity [35], [36], [37], the data collector is located in the
cloud (see Fig. 1). Having received a request for sensing in
a given area, the cloud informs the sensors and the mobile
devices located in that area. They accomplish the request and
collect the information. Then, the information is delivered
to the cloud, stored and made available to the cloud users.
Such model perfectly suits MCS and it is of special interest
when applied to smart cities [38].

Based on sensing interest, which is assumed to be known
in advance, the cloud collector decides which samples need

to be collected. Requests can come from different applications
and may require samples from different location areas and
types of sensors. All these parameters serve as basis to
identify the utility function for data collection. Because of the
high number of participants contributing data, Han et al [30]
define the utility of new samples to be inversely proportional
of the number of already collected samples. According to
this definition, also called marginal effect, during a sensing
campaign the last sample collected does not bring any utility
to the system. However, the marginal effect in data collection
applies only in case a given phenomenon has to be captured
only once. When performing continuous monitoring, a higher
number of samples in cloud collector gathered from a long
time period leads to better system accuracy [39]. Areas with
higher user participation will satisfy the demand for samples
faster leading to low utility in gathering more information.
On the other hand, if only few samples are available from a
given area the demand for additional samples is high.

To define data collection utility, the cloud collector par-
titions the monitored region in a set of areas A. In each
area a ∈ A, the mobile devices generate samples from a
different set of sensors S . We describe the average number
of samples N

a
s |t generated from the sensor s in the area

a during the timeslot t through the Exponential Weighted
Moving Average filter (EWMA):

N
a
s |t = σ ·Na

s |t + (1− σ) ·Na
s−1|t, (3)

where Na
s |t corresponds to the number of samples collected

from sensor s in timeslot t in area a and N
a
s−1|t is its

previous value. The parameter σ is the exponential weighting
coefficient. High values of σ limit the contribution of older
values whose utility, from the collector point of view, is lower
than the contribution of newly generated samples.

High values of N
a
s |t indicate a large number of samples

have been already received at the cloud collector and further
reporting is not needed. Viceversa, low values of N

a
s |t

indicate the need for more samples and the data collection
utility is high. These considerations suggest that the data
collection utility can be defined as the following sigmoid
function:

das =
1

1 + e−
ϕs
ρs
·(−Nas |t+(1− ρs2 ))

, (4)

where ϕs and 1− ρs/2 coefficients control position and the
speed of the incline. The data collection utility can assume
real values in the range [0, 1].

The cloud collector computes das per area a and sensor s
and informs the participants in each area a using periodically
by transmitting beacon messages.

3.3 Smartphone Sensing Potential

From the collector point of view, the smartphone sensing
potential defines the best candidate among participants to
perform sensing and reporting. Suppose two smartphones
s1 and s2 are located in the same area and receive from the
collector the same indication on the data to be collected and
delivered. Then, if the cost in performing such operations
is lower for s1 than s2, the framework should favorite
contribution from s1. The energy cost Es each smartphone
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s spends for both sensing and reporting describes the
smartphone sensing potential.

The smartphone sensing potential sps is computed by
each device individually and is a function of locally spent
energy Es. Similarly to the data collection utility, the relation
between sps and Es is described with a sigmoid function:

sps =
1

1 + e−
ζs
θs
·(−Es+(1− θs2 ))

. (5)

The smartphone sensing potential sps can assume real values
in the range [0, 1] and the parameters 1− θs/2 and ζs control
position of the center and the speed of the incline respectively.
On one hand, a steep increase of the incline reduces the
transition between low and high values of the smartphone
sensing potential and makes the device to work preferentially
in on/off mode, i.e., the device is either an excellent or the
worst candidate for contribution. On the other hand, the
position of the center of the function defines which range of
values of Es makes the device to be an excellent candidate
for contribution.

The energy the mobile devices spend to contribute
data can be attributed to sensing (Ecs) and reporting (Ers )
operations:

Es = Ecs + Ers . (6)

For sensing, the contribution Ecs has to be taken into account
only if the sensor s is not already in use by another
application, which is defined by the utilization context of
s, Us. Otherwise, similar to [14], the energy spent by s is
equal to zero. Ecs is defined as follows:

Ecs = E
c
s · Us, (7)

where E
c
s is the actual energy spent by sensor s and the

utilization context Us is defined as:

Us =

{
0, if the sensor s is used by another application;
1, otherwise.

(8)
Data reporting consists of delivering the information col-
lected from the set of sensors S and transmitted to the cloud
collector wirelessly. Reporting is always performed at the
beginning of the timeslot t for samples collected during
timeslot t − 1. Energy cost related to communication Ers
depends on the employed technology, LTE or WiFi, and is
defined as follows:

Ers =


EW , if WiFi or both WiFi and LTE are enabled;

EL1 , if WiFi is disabled and LTE is idle state;

EL2 , if WiFi is disabled and LTE is connected state.
(9)

Most of the operating systems for smartphones, including
Android and iOS, tend to prefer WiFi over cellular connec-
tivity for data transmission, as it is more energy efficient [40]
and users do not consume the data plan they pay to the
cellular operators [41]. As a result, when both WiFi and LTE
interfaces are active, transmissions take place via WiFi. The
energy EW spent during the transmission time τtx is defined
as:

EW =

∫ τtx

0
PWtx dt, (10)

where PWtx is the power consumed for transmissions of WiFi
packets generated at rate λg [42]:

PWtx = ρid + ρtx · τtx + γxg · λg. (11)

The parameters ρid, ρtx and γxg represent the energy in
idle mode, the transmission power and the energy cost to
elaborate a generated packet.

The Radio Resource Control (RRC) state machine and
the simplified model proposed in [43] are used to model
LTE power consumption. The model defines different energy
consumption levels in relation to the initial state. Although
initial states of the system can be connected, tail and idle [40],
we focus on connected and idle states, as idle state can be
considered as a worst case scenario of tail state.

Whenever the smartphone is idle and needs to commu-
nicate, it transitions into the connected state and after the
transmission is over it goes into the tail state before finally
coming back to idle. In this case, the energy consumption for
the smartphone during reporting can be defined as:

EL1 = PP·TP+PLtx·Ttx+PLtx·DRXIT+PDRX·RRCIT, (12)

where TP and PP are the promotion delay and power, Ttx
and Ptx are time and power transmission, DRXIT is the
Discontinuous Reception (DRX) Inactivity Timer, PDRX is
the power consumed when the smartphone is in one of the
two DRX modes and RRCIT is the RRC Inactivity Timer.

When the smartphone is already in RRC connected state
and transmitting, its energy consumption can be defined
considering only the contribution of signal transmission:

EL2 =

∫ Ttx

0
PLtx dt. (13)

The power consumption for transmitting data Ptx is given
by the model of [40]:

PLtx = αul · Tul + β, (14)

where Tul represents the uplink throughput and the parame-
ters αul and β are the power spent during transmission and
the base power respectively [40].

When the value of the last sensed sample lxs is close
to the last reported value lrs , avoiding reporting allows to
save energy for the devices and improves the utility of data
collection at the collector. More in details, data reporting
does not take place if:

|lxs − lrs | < εs, (15)

where εs is a threshold defining the similarity between the
two values and is application-dependent. For real implemen-
tation, proper setting of the parameter εs requires a control
layer to manage and synchronize the sensing activity of the
mobile device.

This operation can provide significant energy savings,
especially for sensing data that do not exhibit high variability.
This is typical for meteorological measurements, such as
temperature, atmospheric pressure and humidity. When the
variation between the values of samples generated from the
same sensor s in subsequent timeslots is minimal, the utility
of reporting the last sample is low. Therefore, to maximize
system-level utility and save energy, the framework prevents
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reporting and stops sensing. To model this procedure, the
next timeslot is defined as:

tnext =

{
t+ i · n, if |lxs − lrs | < εs;

t+ 1, otherwise.
(16)

The parameter n is a fixed number of timeslots to skip. The
initial value of n is set to 1 and then doubled every time up
to the maximum of 1024 [44]. The parameter i is the number
of times the variation between the values of the samples
remains below εs. In case the decision is to not report, the
cost of reporting Ers assumes values equal to zero. It is
worth to highlight that (16) determines tnext for each sensor
s individually, i.e., the correlation between sensors, which is
application-dependent, is not captured by the model.

3.4 Profiling the Environmental Context

Environmental context Cs of sensor s defines the set of facts
and circumstances happening around the mobile device. It
accounts for both the location of a mobile device (e.g., lying
on a table, in a pocket, in a hand, indoor or outdoor) and
its mobility pattern (e.g., stationary or on the move, with
the possibility to recognize the type of movement). The
environmental context is usually detected with always-on
sensors, such as the accelerometer, enabled with recognition
of movement patterns (e.g., walking or running [45]) and
actions (e.g., driving, riding a car or sitting [46]). Having
knowledge of the environmental context is essential to avoid
performing sensing under unfavorable conditions that affect
the overall energy budget without providing any benefit for
the collector. Although a few practical solutions exist [47],
estimating the environmental context is not simple.

The utility of each sample is defined according to the
environmental context. For the sake of simplicity and without
loss of generality, we assume Cs to take binary values:

Cs =

{
1, if the sample contributes to the sensing objective;

0, otherwise.
(17)

When starting a new sensing campaign, the collector first
broadcasts profiles defining the environmental context to all
the devices. Each sensing campaign is tailored to serve a
different application, for instance air monitoring or gluten
detection. Therefore, the environmental context profiles have
to be different and tailored to the application in use.

3.5 Threshold for Sensing and Reporting

Sensing and reporting operations occur when data collection
utility and smartphone sensing potential are greater than a
threshold δ, which means that the mobile devices sustain
a cost to produce useful data for the cloud collector. In
addition, comparing data collection utility and smartphone
sensing potential with δ prevents the users from contributing
too much or too little. The threshold δ is computed locally at
the mobile device. Proper setting of this parameter is essential
to define the amount of data each device opportunistically
contributes. To define δ, we take into account the actual
level of the battery of the devices (denoted as B) and the
amount of reported data the devices have already contributed
to the system (denoted as D). These two parameters define

historical cost experienced by the devices. The parameter δ
is defined as follows:

δ = f(δb, δd); (18)

where all the parameters δ, δb and δd are real values in
the range [0, 1]. Both δb and δd are function of B and D
respectively. When any of the two parameters assumes a
value equal to 1, δ becomes 1 as well. As a result, the devices
stop contributing upon meeting any of the two conditions:
a low remaining battery of charge or a high amount of data
already contributed. The function f can be chosen arbitrarily.
In this paper, for simplicity, we provide equal weights δb and
δd:

f(δb, δd) =
δb + δd

2
. (19)

Level of Battery: We define the level of battery B as the
remaining charge of the device, where 0 ≤ B ≤ 1. High
values of B correspond to a high level of charge and the
device can contribute data from its sensors. On the other
hand, when the battery is almost empty the users would
like to preserve the remaining charge. These considerations
suggests that the relation between B and δb follows a
negative exponential law. As a result, low values of B will
make δb to assume values close to 1. Bmin is the minimum
level of the battery under which the device stops contributing.
Note that 0 ≤ Bmin < B. As a consequence, δb is defined as
follows:

δb = αλ·B , Bmin 6 B < 1. (20)

Fig. 2(a) shows the function. The parameter α can assume
arbitrary real values between [0, 1], and λ > 1.

Users can tune the parameter Bmin. Proper setting of this
parameter plays a crucial role. Values of Bmin close to the
current battery level B lead the device to contribute little
amount of data. On the other hand, setting Bmin so that the
difference B − Bmin is close to 1, will make the device to
contribute for longer periods of time.

Amount of Reported Data: The amount of reported data D
defines a total amount of data that is delivered using WiFi
(DW

s ) and LTE (DL
s ) connections and is contributed by the

set of sensors S of a single device. D is defined as follows:

D =
∑
s∈S

DW
s +DL

s . (21)

The more data the device contributes, the higher the
values parameter δd assumes. As a result, the devices that
have already delivered a significant amount of data to the
cloud collector in the past contribute further only if it is
necessary. On the other hand, low values of the parameter
δd will enforce the contribution of the devices that have
provided little contribution to the system. The relation
between D and δd is modelled as follows:

δd =

1, if D ≥ Dmax;

log

(
1 +

D

Dmax

)
, otherwise;

(22)

where Dmax is the maximum amount of data each device is
willing to deliver (see Fig. 2(b)). This parameter can be tuned
by the users periodically.
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TABLE 2
Sensor and communication equipment parameters used for performance evaluation

(a) Sensor Equipment

SENSOR PARAMETER VALUE UNIT

Accelerometer Sample rate 50 Hz
Sample size 12 Bits
Current 35 µA

Temperature Sample rate 182 Hz
Sample size 16 Bits
Current 182 µA

Pressure Sample rate 157 Hz
Sample size 16 Bits
Current 423.9 µA

(b) Communication Equipment

SYMBOL VALUE UNIT DESCRIPTION

ρid 3.68 W Energy in idle mode
ρtx 0.37 W Transmission power
ρrx 0.31 W Reception power
λg 1000 fps Rate of generation of packets
γxg 0.11 · 10−3 J Energy cost to elaborate a generated packet

4 PERFORMANCE EVALUATION

This section illustrates performance evaluation of the pro-
posed framework for data collection. We provide an analyti-
cal study and investigate the effectiveness of the framework
in a large scale city-size scenario with thousands of partici-
pants.

4.1 Analytical Results

4.1.1 Set-up
For the evaluation, four users contribute data and each
equipped with one device only. The devices have different
level of remaining battery charge: 10%, 25%, 50% and 100%.
The battery charge is one of the parameters affecting the
threshold δ for sensing and reporting (parameter δb). We
compute δb using (20) by setting α = 0.7 and λ = 10
after having performed analytical analysis that for space
reasons we omit. The analysis aims to quantify the amount
of contribution at high and low levels of battery charge. The
other parameter, δd, corresponds to the amount of previously
reported data and is set to 0 for all the users at the beginning
of evaluation. The evaluation period is 600 timeslots and each
of them lasts 1 second, which corresponds to a 10 minutes
long evaluation period.

Evaluated mobile devices are equipped with a number of
sensors including accelerometer, temperature and pressure
sensors, and transmit information using WiFi. Without loss
of generality, having only one communication technology
simplifies understanding of properties of the data collection
framework. For the sensing equipment, the devices exploit
real sensors implemented in current smartphones and tablets.

Specifically, the FXOS8700CQ 3axis linear accelerometer
from Freescale Semiconductor [48] and the BMP280 from
Bosch [49], which is a digital pressure and temperature sensor.
Equation (11) describes WiFi power consumption spent by
the devices for communication. Table 2 presents the detailed
information on communication and the parameters.

For the sake of simplicity, all the users obtain the same
profiles for the environmental context from the collector, e.g.,
C = {1.0, 1.0, 1.0}. During each timeslot t, the devices gener-
ate the current contextCt = {x, y, z}, where x, y and z define
the context for the accelerometer, temperature and pressure
sensors. The parameters are generated as random variables
following exponential distribution with rate 1.25. Then, Ct is
compared with C . Values of Ct close to 1.0 indicate that the
smartphone performs sensing in favorable conditions. On the
other hand, values of Ct close to 0.0 correspond to samples
generated in unfavorable conditions. Therefore, such data
does not bring any utility from the collector point of view.
The utilization context Us is modelled as a random variable
that assumes values uniformly distributed in the range [0, 1]
and is generated during each timeslot for each user device.

4.1.2 Results

The main performance characteristics of the proposed frame-
work include the amount of collected data and the energy
cost for sensing and reporting. In addition, we evaluate
the impact of the main framework control parameters: the
threshold for sensing and reporting δ and the coefficient
γ balancing the impact of the data collection utility and
the smartphone sensing potential. The latter parameters are
calculated per timeslot.
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Amount of Collected Data: For the analysis, the parameter
γ is fixed to 1/2 to give equal importance to the data
collection utility and the smartphone sensing potential.
Fig. 3 illustrates the amount of data generated by four
users from accelerometer readings. Other sensors exhibit
a similar behavior and, for space reasons, the results are not
shown. The performance of both collector- and smartphone-
friendly policies are investigated for the entire evaluation
period. The CFP policy fosters users to contribute larger
amounts of data than the SFP policy. This behavior is
expected, as the SFP is tailored to perform operations only
when the environmental context guarantees the devices to
generate useful information to the system. Interestingly, User
1 contributes nearly the same amount of data with both
policies. Having the lowest remaining battery charge, the
threshold δ assumes high values and limits user contribution.
With γ = 0.5, the contribution of data collection utility
and the smartphone sensing potential are equal for taking
sensing and reporting decisions. As a result, User 1 reports
measurements only when the collector indicated having high
interest in obtaining samples from this user. For all the other
users, the amount of contributed data has a sharp increase,

which becomes smoother towards the end of the evaluation
period. The change in speed of the curves depends on the
initial remaining charge of the battery. The motivation is
twofold. On one hand, having obtained enough samples
the utility at the collector becomes smaller (data collection
utility factor). On the other hand, the remaining capacities of
the devices decrease with time while the amount of already
reported data increase. As a result, it becomes more difficult
to meet the threshold δ and this lowers the contribution rate.

Fig. 4 analyzes the total amount of collected data. In
particular, Fig. 4(a) compares the amount of information each
sensor generates. The accelerometer generates the lowest
amount of data in comparison with the temperature and
pressure sensors. Obviously, the amount of generated data is
proportional to the sampling rate and resolution size, with
the temperature sensor having the highest rate and resolution
size (see Table 2(a)). Low values of sampling frequency make
the difference between the total amount of generated data by
the two policies small. On the other hand, with the increase
of the sampling frequency such difference increases. Fig. 4(b)
provides a comparison between the total amount of data
generated by the two policies and when no policies are
utilized. Each curve denotes the cumulative amount of data
generated by the three sensors together. As expected, the
total amount of data generated without using the proposed
framework is higher than having active either CFP or SFP.
This is because the devices perform sensing and reporting
even when the environmental context Ct is unfavorable. As
a result, many of the generated samples do not bring any
additional utility to the system. The SFP makes the user to
only perform operations when the environmental context is
favorable and for this reason generates the lowest amount
of data. On the other hand, the CFP is more flexible and
allows the devices to sense and report data even in case the
environmental context is unfavorable, but the data collection
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Fig. 6. Analysis of threshold δ

utility and the smartphone sensing potential conditions
should always be met. As a consequence, the amount of
data generated by means of the CFP is significantly lower
than the case when the framework is not utilized.

Energy Cost: Fig. 5 compares energy consumption of each
user for CFP and SFP policies. The results are obtained
at the end of the evaluation period of 600 timeslots. As
expected, User 1 consumes the least amount of energy.
Indeed, s/he has only 10% of remaining battery charge at
the beginning of the experiment and the framework tries to
limit its contribution. For User 1, both CFP and SFP provide
a nearly equal energy consumption. Thus, it is possible
to conclude that under the current setting, the framework
makes users with low remaining charge to contribute only
when the environmental context ensures that the collected
data brings utility for the system. For all the other users, the
difference between the energy spent under the two policies is
increasing with the increase of the remaining battery charge
at the beginning of the evaluation period. The overall energy
spent under is nearly 14 J and for a smartphone equipped
with a 2550mAh and 3.85V battery such as the Samsung
Galaxy s6, the total energy at the disposal is as of 35343 J.
As a consequence, it is possible to conclude that contributing
data opportunistically to a MCS system does not affect
dramatically the performance of today mobile devices.

Analysis of Data Collection Control Parameters: Having
evaluated the amount of data contributed and the cost to
generate such information, we now study the impact of
the parameters δ and γ on the overall performance. Fig. 6
analyzes the behavior of the threshold δ that enables the
device to decide whether to perform sensing and reporting.
For this analysis, the parameter γ is set to 0.5. Fig. 6(a) shows
the values δ assumes during the evaluation period for all
the users under the CFP policy. For all the users, δ increases
with time. While contributing data, on one hand the users
spend energy and this affects the remaining charge of the
battery (parameter δb). On the other hand, delivering data
increases the amount of already reported data (parameter δd).
As expected, for User 1 the threshold δ is always higher than
for all the other users because her remaining battery charge
at the beginning of the experiments is the lowest. However,
unlike the other users, the speed of increase of the curve of
User 1 is slow. Indeed, all the other users contribute more

data than User 1. As a result, the contribution of the amount
of already reported data for User 1 is lower than for User 2, 3
and 4. Fig. 6(b) compares the values δ assumes at the end of
the evaluation period for both policies CFP and SFP. Unlike
the results obtained for energy consumption (see Fig. 5), for
all the users the difference between the values δ assumes
with the two policies decreases. Similarly to Fig. 5, for User 1
such difference is small. Intuitively, higher values of δ limit
user contribution and correspond in achieving low energy
consumption.

Fig. 7 studies the impact of the parameter γ on the
performance of the framework. Recalling (1) and (2), the
parameter γ defines the weight of the data collection utility
and the smartphone sensing potential for taking decisions
to perform sensing and reporting. Fig. 7(a) and Fig. 7(b)
show respectively the amount of data generated and the
energy the devices consume for both CFP and SFP policies
with increasing values of γ. Low values of γ give more
importance to the data collection utility, hence the devices
contribute data even if they experience a high energy cost
as Fig. 7(a) highlights. On the other side, with the increase
of the parameter γ, the framework is tailored to pay more
attention to the potential the devices have in perform sensing.
This translates in a better energy management at the cost of
delivering a lower amount of data. For the CFP policy, notice
that the energy cost is increasing smoothly for values of
γ below 0.5 (see Fig. 7(a)) although the amount of data
generated remains almost constant (see Fig. 7(b)). This
energy cost should be attributed to the utilization context
Us. When the parameter γ assumes values higher than 0.6
both the energy and the amount of collected data have a
sharp decrease. As the relevance of the data collection utility
decreases, the smartphone sensing potential factor becomes
crucial in order to take sensing and reporting decisions. To
better analyze such decrease, we plot in Fig. 7(c) the amount
of data User 4 generates for values of γ > 0.6. Similarly
to Fig. 3, in all the curves the increase is at first sharp and
then becomes smooth. The higher the values γ assumes, the
sooner the change of slope and the lower the amount of data
the user contributes. In turns, this leads to energy savings.

4.2 Simulation Results
To evaluate and assess the efficiency of the proposed frame-
work with a large number of participants and in a citywide
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scenario, we have built a custom crowd sensing simulator.
The following sections presents the detailed functionality
along with the simulation scenario and results.

4.2.1 Simulation set-up
The developed simulator is a discrete-event simulator where
the participants of the MCS system contribute data to the col-
lector opportunistically. The simulator supports pedestrian
mobility, while data generation exploits sensors commonly
available in mobile devices (see Section 4.1). The simulation
results can be obtained the level of individual devices as well
as the system level, which helps to analyze data reporting
progress and efficiency of the employed crowd sensing
techniques.

The center of Luxembourg city was selected for the
simulations. It covers an area of 1.11 km2 and is the home of
many national and international institutional buildings. To
obtain information about the streets of the city, the simulator
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exploits a crowdsourced application providing free access
to street-level maps2. Such information is given in form of a
set of coordinates C containing <latitude, longitude, altitude>
(see Fig. 8).

The participants move along the streets of the city,
with their original locations randomly assigned form the
set of coordinates C. The number of participants is set to
20 000, which corresponds to more than one fifth of the
population of Luxembourg (110,499 inhabitants as of end
2015). Each participant has only one mobile device and walks
for a period of time that is uniformly distributed between
[10, 20] minutes with an average speed uniformly distributed
between [1, 1.5] m/s. The participants contribute data to the
collector while walking. Once the period of walking ends,
they stop moving and contributing. As a consequence, users
generate information for a little period of time along the day,
which allows to study the system performance under a worst
case scenario. The users start walking in the city according
to two arrival patterns. In the first one, for simplicity, the
start time of the walk is uniformly distributed between 8:00
AM and 1:40 PM. The second arrival pattern is based on a
study on a data set containing traces of pedestrian mobility
(ostermalm_dense_run2) [50]. Fig. 9 shows the probability
density function of the users arrival, which was adapted to
our arrival time period 8:00 AM - 1:40 PM.

Fig. 10 illustrates the values the context C assumes along
the simulation period. Each mark represents the average
value of C during a 20 minutes interval. For instance,

2. DigiPoint: http://www.zonums.com/gmaps/digipoint.php

http://www.zonums.com/gmaps/digipoint.php
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Fig. 11. Energy spent for sensing and communication

the mark at 10:20 AM corresponds to the average value
C assumes during 10:00 AM to 10:20 AM. To study the
impact of the context on the simulations, unfavorable context
conditions are set in specific time periods, namely 10:00 AM
- 11:00 AM and 11:30 AM - 12:00 PM.

Data generation takes place with the same set of sensors
used for the analytical study. Communications occur over
the WiFi link, having obtained the precise location of WiFi
hotspots in form of <latitude, longitude> 3. Table 2 presents
the detailed information of the simulation parameters.

4.2.2 Results
For evaluation purposes, we conduct experiments aiming to
assess the amount of information gathered from the devices
and the energy cost consumed during data reporting.

Cost of sensing and reporting: To analyze the energy cost
under a worst case scenario, the devices generate data
continuously during the movement of the users.

Fig. 11 presents the distribution of users and their energy
spent for sensing with the uniform and traces-based user
arrival patterns. As expected, the user arrival pattern does
not influence the energy consumption, which only depends
on the amount of time the users generate data. As the users
contribute data for time periods as low as 10 minutes up
to time periods of a maximum of 20 minutes, the profiles
of Fig. 11(b) and Fig. 11(a) follows a normal distribution.
Current drain of sensing operations is on average 373.41 µAh
and 368.80 µAh for uniform and traces-based arrival patterns.
In the worst case, few users experience a cost that is nearly
more than double with respect to the average. Comparing to
the battery capacity available in modern smartphones, which
is in the order of 2000 mAh, it is possible to conclude that
the energy cost for sensing is negligible with respect to the
energy spent for communications (see Fig. 11(b)).

Amount of data collected: The amount of information
reported by users devices is unveiled in the following two
experiments. First, we evaluate the amount of data generated
per single sensor for the two different user arrival patterns.
To capture distribution of the samples per area, we divide
Luxembourg City map into five areas and measure the
number of samples reported from each area. The objective

3. Online: https://www.hotcity.lu/en/laptop/www/About/Wi-Fi-
coverage

is to understand the amount and the variability of the data
generation process along the time period 8:00 AM - 2:00 PM.
Having a higher number of participants, it allows to test the
performance of the framework in a large scale environment.

Fig. 12 shows the total amount of data collected along
with the simulation period for the two user arrival patterns.
As expected, the amount of data is proportional to the sam-
pling frequencies of the three considered sensors. Recalling
that each user contributes only during a short period of time
(10 to 20 minutes), the amount of collected information is
considerable. For example, 20 000 users arriving according
to the uniform arrival pattern would generate 2.61797 GB,
12.71 GB and 10.96 GB for the accelerometer, temperature
and pressure sensors respectively. Fig. 12(a) shows the results
for the uniformly distributed arrival pattern. The impact of
the unfavorable context during the periods 10:00 AM - 11:00
AM and 11:30 AM - 12:00 PM is clear and reduces the amount
of generated data. Fig. 12(b) illustrates the results for the
user arrival pattern based on the data set. The unfavorable
context impacts the amount of generated data similarly to
the previous case.

Having the knowledge on the amount of data the users
can contribute is important for the applications and to
determine the accuracy in mapping a phenomena. However,
for drawing more precise conclusions, it is fundamental to
determine also where and when these samples are generated.
For this, we define a new metric, called Sample Distribution
(SD), which measures the amount of generated samples per
meter and is defined as follows:

SD =
Na
s |t
∆

, (23)

where∆ is the average distance between samples andNa
s |t is

the number of samples generated (see Table 1). The parameter
∆ is defined as follows:

∆ =

∑n
i,j
i≥j

d(i, j)

n(n− 1)

2

. (24)

The term d(i, j) is the distance (in meters) between the
location where the samples i and j were generated.

Fig. 13 plots SD for each segment of the city map for
the time period 10:00 AM - 10:30 AM. In this analysis, only
accelerometer samples were utilized. The SD metric weakly

https://www.hotcity.lu/en/laptop/www/About/Wi-Fi-coverage
https://www.hotcity.lu/en/laptop/www/About/Wi-Fi-coverage
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Fig. 12. Amount of data generated

Area 1: 58.3137 sample/m

Area 2: 30.8808 sample/m

Area 3: 68.5739 sample/m

Area 4: 75.0856 sample/m

Area 5: 108.003 sample/m

23612

0

Time: 10:00-10:30

Fig. 13. Sample distribution (SD) for 20 000 users moving in the center of
Luxembourg

depends on the size of the area. Although being wider
than Area 3, a large part of Area 2 is a public park with
a fewer number of streets. The reason is that the SD metric
measures the distribution of the samples taking into account
the location where they have been generated, recording
latitude, longitude and altitude. Consequently, high density
areas, such as Area 5, exhibit high values of SD.

Fig. 14 shows the distribution of SD for all the 5 areas for
the entire simulation period. In this experiment, the users are
located with the uniform arrival pattern. It is interesting to
notice that the lowest values of SD occur for the initial end
final time intervals (8:00 AM - 9:00 AM and 1:00 PM - 2:00
PM). During the initial and final time intervals the number
of participants is low as the simulator locates the users with
a uniform distribution between 8:00 AM and 1:40 PM and
they move for at maximum 20 minutes.

5 CONCLUSION

In this paper we propose a new distributed data collection
framework for opportunistic cloud-based MCS systems. The
framework aims at minimizing the costs for the participants
in performing sensing and reporting while maximizing

the utility in data collection for the cloud collector. The
performance of the framework was verified both analytically
and through simulations in a real urban environment and
with a large number of participants. We analyze the costs the
participants experience and the amount of data the system
allows to gather. The analytical results highlight that the
major contribution to energy consumption is attributed to
reporting and not sensing. The simulation results confirm
the effectiveness of the proposed approach in a real urban
environment for a large number of participants. For future
work, we plan to implement the current model with an
application to verify the performance of the framework in
real world. We also consider to extend the current model to
consider caching policies for buffering samples and improve
efficiency of data delivery. Furthermore, we plan to study
the impact of the size of the areas to the data collection.
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