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Abstract—Smart cities exploit the most advanced information technologies to improve and add value to existing public services. Having
citizens involved in the process through mobile crowdsensing (MCS) augments the capabilities of the platform without enquiring additional
costs. In this paper, we propose a novel framework for data acquisition in MCS deployed over a fog computing platform which facilitates a
number of key operations including user recruitment and task completion. Proper data acquisition minimizes the monetary expenditure
the platform sustains to recruit and compensate users as well as the energy they spend to sense and deliver data. We propose a new
user recruitment policy called DSE (Distance, Sociability, Energy). This policy exploits three criteria: (i) spatial distance between users
and tasks, (ii) user sociability, which is an estimate of the willingness of users to contribute to sensing tasks, and (iii) remaining battery
charge of the devices. Performance evaluation is conducted in a real urban environment for a large number of participants with new
metrics assessing the efficiency of recruitment and the accuracy of task completion. Results reveal that the average number of recruited
users improves by nearly 20% if compared to policies using only spatial distance as selection criterion.
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1 INTRODUCTION

WORLD population living in cities has experienced
an unprecedented growth over the past century.

While only 10% of the population lived in cities during
1900, nowadays this percentage corresponds to 50% and is
projected to further increase [1]. Sustainable development
plays therefore a crucial role in city development. While only
2% of the world’s surface is occupied by urban environments,
cities contribute to 80% of global gas emission, 75% of global
energy consumption [2] and 60% of residential water use [1].
Street lighting attributes nearly 19% of the worldwide use
of electrical energy and entails 6% of global emissions of
greenhouse gases [3].

Smart cities rely on Information and Communication
Technology (ICT) solutions to improve citizens’ quality of
life [4], [5]. The application of the Internet of Things (IoT)
paradigm to urban scenarios is of special interest to support
the smart city vision [5], [6], [7]. IoT is envisioned as the can-
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didate building block to develop sustainable ICT platforms.
With IoT, everyday life objects are uniquely identifiable and
“smart”, i.e., they are equipped with computing, storage and
sensing capabilities and can communicate one with each
other and with the users to enable pervasive and ubiquitous
computing [8]. Cisco has recently proposed fog computing
as an extension of the cloud computing paradigm at the
edge of the network [9]. Fog computing is tailored to serve
applications that are geodistributed, require low latency
and context awareness [10], such as indoor localization [11].
Including citizens in the loop with crowdsensing approaches
augments capabilities of existing infrastructures without
introducing additional costs and has been proved to be a
win-win strategy for smart city applications [12], [13].

Mobile crowdsensing (MCS) has emerged in the recent
years, becoming an appealing paradigm for sensing data [14].
In MCS, users contribute data generated from sensors
embedded in mobile devices including smartphones, tablets
and IoT devices like wearables. The aggregated information
is then delivered to a collector. The pervasive diffusion of
smartphones and wearables along with the rich set of built-in
sensors mobile and IoT devices are equipped with lead to the
success of MCS paradigm. Accelerometer, gyroscope, GPS,
microphone and camera are a representative set of sensors
which are essential to operate a number of applications
in health care, environmental and traffic monitoring and
management [15]. Google, for example, uses crowd-sourced
information about smartphone locations to offer real-time
view of congested traffic on roads and has recently released
a new application, called Science Journal, which permits
visualization of data collected smartphones [16].
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In MCS, data acquisition, also known as data collection,
can be participatory or opportunistic [15]. In opportunistic
sensing systems, the user involvement is minimal: sensing
decisions are application- or device-driven. In participatory
sensing systems, users are actively engaged in the sensing
process. The users are recruited by a central platform,
which dispatches sensing tasks. Users can then decide
which request to accept and, after accepting, they have to
accomplish specified sensing and data reporting tasks. On
one side, opportunistic sensing lowers the burden of user
participation as devices or applications are responsible to
take sensing decisions. Conversely, participatory sensing
systems are tailored to crowdsensing architectures with a
“central platform”, which facilitates system control operations
like task assignment, user incentives and rewarding to
compensate the participants for their contribution.

User recruitment is one of the key challenges in participa-
tory MCS systems. In urban environments, the high number
of potential contributors calls for the design of efficient
recruitment policies. Implementing proper policies allows
selecting users able to fulfill sensing tasks with high accuracy
and at minimum costs for the system. From the standpoint of
the central platform, which organizes and dispatches tasks,
the efficiency of a data acquisition framework is defined in
terms of the revenues and the costs sustained. The platform
earns revenues through Sensing as a Service (S2aaS) business
models [17]. The costs are twofold. The central platform
sustains monetary costs to recruit and reward users for their
contribution. Users as well sustain costs while contributing
data, i.e., the energy spent from the batteries for sensing and
reporting data and, eventually, the data subscription plan
if the cellular connectivity is utilized for reporting. As in
cloud-based S2aaS the mobile devices are the most energy-
hungry components in the ecosystem [18], cost-effective
solutions in data acquisition not only allow minimizing the
energy expenditure, but are also are a powerful incentive to
stimulate user participation [19].

In this paper, we propose a novel framework for data
acquisition in participatory MCS systems. The framework is
deployed over a fog computing platform specifically devel-
oped for smart cities. The fog facilitates the most important
operations in data acquisition, such as user recruitment
and task completion. Specifically, we introduce a new user
recruitment policy called DSE, which is based on three
criteria: (i) the spatial Distance between users and tasks, (ii)
user Sociability, which is an estimation of the willingness of
users to participate in and contribute to sensing tasks, and
(iii) the Energy, computed as the remaining battery charge of
user devices. Cloudlets in the fog platform are responsible
to estimate sociability, which determines whether users
are eligible to contribute data. Highly sociable users share
many interests with friends and are more active, i.e., they
constantly use devices online, which makes them excellent
candidates for data acquisition. Furthermore, we propose
novel metrics to assess the efficiency of any recruitment
policy and the accuracy of task completion. The User Recruit-
ment Effectiveness (URE) metric evaluates the number of
users contacted versus recruited. The Global Task Accuracy
(GTA) metric quantifies the accuracy of accomplished task by
evaluating the distribution of the data the users contribute
along time. Performance evaluation, conducted in a real

urban environment for a large number of participants, reveals
the effectiveness of the proposed user recruitment policy as
the average number of recruited users improves by nearly
20% if compared to policies using spatial distance as the only
selection criterion.

The synopsis of contributions of this work is as follows:

• Propose a novel fog computing platform, which
brings computing intelligence close to the end users
in a distributed fashion across the city, specifically by
using fog computing cloudlets, which are deployed
on bus stops throughout the city.

• Develop new data acquisition framework for MCS
systems, which exploits the proposed fog platform
for user recruitment and task completion.

• Introduce novel metrics to assess efficiency of user
recruitment and accuracy of task completion.

• Design of a custom simulator for user recruitment
and data acquisition in a large-scale urban scenario.

• Provide performance evaluation of the proposed
framework through simulations.

The rest of the paper is organized as follows. Section 2
presents background on MCS data acquisition frameworks
and user recruitment policies, motivating the need for social-
based and energy-efficient recruitment policies. Section 3
proposes a novel fog computing platform, where the com-
puting capacity is efficiently distributed across the urban
environment. Section 4 details the proposed methodology for
data acquisition and user recruitment. Section 5 analyzes and
evaluates user sociability. Section 6 provides performance
evaluation and Section 7 concludes the work outlining future
research directions on the topic.

2 BACKGROUND AND MOTIVATION

This section reviews the research in the field of mobile
crowdsensing with a focus on participatory data acquisition
frameworks and user recruitment policies.

MCS data acquisition platforms are systems in which
users contribute information from IoT mobile devices. Such
information is then delivered to a collector, typically located
in the cloud, to be at disposal of the organizer of the sensing
campaign for processing and analysis. Fig. 1 illustrates the
main elements of a typical MCS system.

2.1 Data Acquisition in MCS
The main goal of the data acquisition framework is to collect
information efficiently. For this, the framework defines a set
of steps necessary to produce and deliver information to the
collector. Data collection frameworks can be general-purpose
or application-specific [20]. Application-specific frameworks
are designed to serve only one type of application at a time.
GasMobile [21] and NoiseMap [22] are examples of such data
collection frameworks developed to monitor air and noise
pollution respectively.

In this paper, we propose a general-purpose framework.
Unlike application-specific frameworks, the salient feature
of general purpose frameworks is the capability of serving
many applications at the same time. BLISS [23] uses an online
learning algorithm for general-purpose data collection. The
collector optimally assigns tasks to the users having a limited
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Fig. 1. System scenario

budget available at disposal for rewarding. Wang et. al [24]
propose an energy-efficient algorithm for uploading the
sensed data. The algorithm groups users into two categories:
those who have paid data plan with mobile operators and try
to minimize the energy cost during data uploading, and those
who want to minimize cost of data uploading benefiting
from free-of-charge networks, such as WiFi or Bluetooth.
With Piggyback CrowdSensing [19] data uploading can be
performed during voice calls. Liu et al. [25] define a new
routing mechanism for data collection in MCS systems to
cope with user selfishness. Data delivery is always performed
through opportunistic communications and is relayed in a
delay-tolerant fashion only by non-selfish nodes that are
willing to cooperate. To balance the workload among the
participants while maximizing the utility of data collection,
a Nash bargaining approach is proposed in [26] with two
cooperative players, one for load distribution and one for
utility maximization.

The closest framework to our work is CARDAP [27]. It
extends and augments functionalities of CAROMM [28] by
enabling efficient data analytics performed in a distributed
fashion in the fog platform. Unlike CARDAP, in this work we
exploit the computing capacity provided by the fog platform
not for data analytics, but for efficient user recruitment and
task completion in participatory MCS systems.

2.2 User Recruitment in MCS
To organize a MCS campaign, the organizer, such as a
government agency, an academic institution or a business
corporation, sustains costs to recruit and compensate users
for their involvement. Therefore, devising efficient recruit-
ment policies is essential. On one hand, it allows organizers
to minimize the expenditure. On the other hand, it helps to
choose the users that will carry out the campaign successfully.
For example, in the context of public safety, it is essential to
select users that maximize the trustworthiness of collected
data [29], [30], [31], [32], [33].

Several research works investigate task assignment and
user recruitment in MCS systems. The majority of the
proposed policies aims at minimizing the cost of sensing
for organizers while guaranteeing a certain level of system
accuracy, such as coverage of the sensing area [34], [35],
[36], [37]. Reddy et al. [34] propose a recruitment policy
which selects the participants on the basis of their availability
for data collection in a given geographical area and at a
defined time. In the context of opportunistic sensing systems,
Karaliopoulos et al. formulate an optimization problem
to minimize system costs and predict user location using
deterministic and stochastic mobility models [35]. Hassani

et al. [38] propose Context-Aware Task Allocation (CATA),
which is a framework for opportunistic MCS systems allocat-
ing tasks to users recruited through an special policy. The pol-
icy aims at selecting the most appropriate users for sensing
by computing a set of indicators that determine the similarity
between the participants and the tasks. Moreover, the policy
also considers energy consumption of operations like sensing
and data delivery and protects user privacy, e.g., the platform
never asks users to reveal sensible information such as user
location. Liu et al. [39] propose an energy-efficient participant
selection scheme, which relates residual battery charge of
user devices to the willingness to contribute. The scheme
ensures the quality of the sensed information in terms of
the amount of collected data per task. With a comparative
analysis of delay-tolerant routing protocols for reporting,
Tuncay et al. [40] propose a comprehensive framework that
simultaneously addresses both participant recruitment and
data acquisition. As users might be disclosing their location
during the selection process, in [41] the authors investigate
spatial cloaking, which is a promising and effective solution
to guarantee privacy.

The closest user recruitment policy to our proposal
exploits social relationships to establish a trusted route
between service requester and provider parties [42]. More
specifically, the service requester is interested in acquiring
information on a given phenomenon. If the service provider
belongs to the same community of the requester, it receives
immediately the sensing task. Otherwise, the task is offered
to users belonging to overlapping communities until it is
delivered to the service provider. The trust of passages
among the communities is guaranteed by social ties between
the users within each community.

3 FOG COMPUTING PLATFORM IN SMART CITIES

Fog computing architectures are heterogeneous and include
both devices at the edge of the network and traditional cloud
data centers. In the front-end, the mobile devices are IoT
devices, smartphones and cloudlets with variable amount
of computing, storage and networking resources. Cloudlets
are typically micro servers or local processing units such as
notebook or desktop computers used for temporary storage
and processing [43]. In addition to computing resources,
they provide data aggregation functions to reduce the
amount of information delivered to the cloud. Cloud data
centers, located in the back-end of the architecture, provide
centralization of functionalities and backup.

To support IoT-based services and applications including
MCS in urban environments efficiently, the deployment
of fog architectures is needed [44]. Edge devices such as
cloudlets, that are responsible for provisioning of location-
aware and low latency computing, have to be geographically
distributed across the city. Bus stops are a natural choice
for installing cloudlets for a number of reasons. First, bus
stops are widespread across urban environments. Second,
they are already existing and deployed infrastructure. As a
consequence, such solution would save capital expenditure
costs. For example, bus stops are already connected to the city
power grid, therefore there is no need for investments. Third,
bus-stops are expected to become intelligent in the near future
and provide additional community services. For example,
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(a) Turin (b) Budapest (c) Ottawa
Fig. 2. Analysis of stop relevance distribution in the cities of Turin, Budapest and Ottawa

TABLE 1
Classification of stop relevance. Each interval corresponds to the

number of trips passing by a stop from 6:00 AM to 10:00 PM.

COLOR
RELEVANCE INTERVAL

TORINO BUDAPEST OTTAWA

0 - 5 0 - 25 0 - 25
5 - 10 25 - 100 25 - 50

10 - 50 100 - 250 50 - 100
50 - 100 250 - 500 100 - 250

100 - 250 500 - 750 250 - 500
250 - 500 750 - 1000 500 - 1000

>500 >1000 >1000

but stops will host femto cells to increase cellular capacity
and connectivity [45]. In cities, bus stops are not all identical.
Because of the location, some of the them are hubs, i.e., they
are stops used by a huge number of passengers every day.
Therefore, such stops are more relevant to the system than
the ones used by few passengers. Obviously, stops need to
be equipped with computing capacity proportionally to their
relevance. To study the relevance property of bus stops, we
analyze data from Google Transit Feed. Google Transit [46]
is a tool that integrates information on public transportation
system like stop location, routes, bus schedule and fare on
Google Maps to let trip planning easier and accessible for
everyone.

Similarly to [47], the relevance of stop i is defined in
terms of the number of trips crossing i during a given
time period. For the evaluation, the time period is set to
6:00 AM - 10:00 PM of a weekday, namely 2016-06-17. Fig. 2
shows relevance stop distribution in different cities, namely
Torino, Budapest and Ottawa according to the classification
proposed in Table 1. In all the cities, the number of stops
with high relevance is low. Relevant stops are typically
concentrated in the city center or in proximity of popular
public parking facilities or train stations, which are expected
to serve a high number of users along the day.

4 DATA ACQUISITION FRAMEWORK

A data acquisition framework defines the set of steps
necessary to produce and deliver the information from the
participants to the organizer/collector. Fig. 3 shows the
architecture considered and illustrates the functions each
actor carries out.

The organizer of the crowdsensing campaign C is inter-
ested in acquiring data from a set of points of interest in the city,
also called the sensing terrain. The organizer, located in the
cloud, is in charge of analyzing data after it has been collected

and make it available to S2aaS applications. The organizer
defines the set of sensing tasks W = {w1, w2, . . . , wW

} of
C. Each task w

i

is described in terms of its location L

i

and
time duration T

i

, i.e., w
i

(L

i

, T

i

). The location L consists of
latitude and longitude parameters, defining the center of the
area of interest. The time duration T is given in timeslots. As
a result, the duration T of the campaign C is as follows:

T =

X

i2W
T

i

. (1)

In this work, the user recruitment policy exploits the
computing capacity of the fog platform to determine user
eligibility. It is worth noting that user recruitment is not the
sole application that the fog platform deployed as in Section 3
can support. Local analytics [27], [48], tag affinity [49],
privacy preservation and evaluation of trust of contributed
data [50], [51], [52] are a few examples of functionalities that
the proposed fog platform can support. The cloudlets receive
the tasks to dispatch from the organizer in the cloud. The
cloudlets in proximity of the location of the sensing tasks are
in charge of recruiting the users with the policy proposed in
Section 4.1. The participants communicate periodically to the
cloudlets information about their sociability and remaining
battery charge. Consequently, the cloudlets can determine
which users are eligible to become contributors and contact
them for the assignment.

After being contacted, the users can decide whether to
accept the task. In positive case, users acquire the status of
recruited, they are assigned to the task and can contribute
data. Acceptance depends on user sociability and remaining
battery of charge of user devices. Users with high values of
sociability factor use social media more often and are likely
to accept the task [53].

4.1 User Recruitment

User recruitment is a fundamental step in participatory data
acquisition frameworks. Recruitment policies delineate the
set of criteria for user eligibility in contributing to crowdsens-
ing campaign. Contrary to traditional recruitment solutions,
in this paper we define a policy able to select participants
on the basis of three parameters: (i) the distance between
users and sensing task location (D), (ii) user sociability (S),
and (iii) remaining battery of charge of users devices (E).
The policy is named DSE (Distance, Sociability, Energy). The
parameters D, S and E

i

are unit-less and can assume real
values in [0, 1]. Table 2 lists description of symbols used in
the model.
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Fig. 3. Architecture of the proposed fog computing-based data acquisition framework

TABLE 2
Description of symbols

SYMBOL DESCRIPTION

C Crowdsensing campaign
w Sensing task w
W Set of tasks | w 2 W
u User u
U Set of users | u 2 U
t Timeslot t
T
i

Duration of task i
T Duration of the sensing campaign
L Location of users and tasks

R
i

Recruitment factor of user i
D

i

Distance factor of user i
S
i

Sociability factor of user i
E

i

Energy factor of user i

Rmin Minimum recruitment factor for eligibility
D

u,w

Distance (m) between user u and task w
Dmax Maximum task coverage radius
E

s

Energy consumed for sensing
E

r

Energy consumed for data delivery (reporting)
P
tx

Power consumed during data delivery

A
i

Task acceptance factor of user i
N Minimum number of users to mark a task as accomplished
P
i

Popularity factor of location i
E [Nc] Average number of contacted users
E [Nr] Average number of recruited users

Let U = {u1, u2, . . . , uU

} be the set of users potentially
available to perform sensing. Each user u

i

is described
in terms of his/her current location, sociability factor and
energy, i.e. u

i

(L

i

, S

i

, E

i

). Both user location and sociability
factor are time dependent.

During each timeslot, the recruitment policy selects users
with highest recruitment factor R from the set U . Only users
with values of R > Rmin are taken into consideration and
contacted. Rmin defines the minimum recruitment factor and
is set by the organizer to be identical for all the tasks in the
campaign C. For each user i, the recruitment factor is defined
as follows:

R

i

= ↵ ·D
i

+ � · S
i

+ � · E
i

, (2)
where the parameters ↵, �, � are weighted coefficients defin-
ing the impact of the corresponding component, distance,
sociability and energy on R. Taking into account that ↵+�+�

must equal unity, high values of ↵ will prioritize selection
of users close to the location of sensing tasks. High values
of � will favor selection of highly sociable users while high
values of � will make the remaining battery charge of devices
the most important component for recruitment. Section 6.3.3
details how to properly set the parameters to maximize the
number of the successfully accomplished tasks.

The component D
i

is the distance factor, which measures
the distance of user u

i

from the location of sensing task w

j

with respect to a maximum coverage radius for the task
Dmax.

D

i

= 1� (D

u

i

,w

j

/Dmax). (3)
Users located farther than Dmax from the location of a
sensing task are not considered eligible to contribute data for
that task. Indeed, the closer the users are to the sensing
task location, the higher the accuracy in capturing the
phenomenon is. The Haversine formula can be employed to
compute D

u

i

,w

j

[54].
User sociability S can be defined in terms of the amount

of data users consume or the time they spend using mo-
bile social network applications, or their combination [55].
Sociability is an essential parameter to consider for user
recruitment. Users with high sociability are more active
and use their devices online intensively, which makes them
excellent candidates during the selection process. Moreover,
they tend to visit more places and get connected to more
users, which further increases their mobile social activity [56].
Section 5 provides more information and deep analysis on
how to compute user sociability.

The parameter E indicates the energy, i.e., the remaining
battery charge of user devices. E is directly measured from
the mobile or IoT device operating system and normalized to
be in the range [0, 1]. Indeed, the most widely adopted mobile
OS like iOS and Android provide APIs to obtain information
on current level of battery charge expressed in percentage.
For crowdsensing operation, the devices consume energy to
perform sensing (E

s

) and reporting (E
r

) operations:
E = E

s

+ E

r

. (4)
The energy E

s

drain due to sensing is the sum over all
sensors K involved to fulfill a task during T :

X

k2K

TX

t=1

f

k

· ⇢
k

, (5)

where f

k

is the sampling frequency of sensor k and ⇢

k

a
constant, different per sensor, which describes the energy cost
per sample [27]. Typically, the parameter ⇢ can be obtained
from the data sheet of the sensor.

The users exploit WiFi connectivity for data reporting
and communication with the cloudlets. Most of the mobile
operating systems, including Android and iOS, tend to prefer
WiFi over cellular connectivity for data transmission, as it is
more energy efficient [57] and users do not consume the data
plan they pay to the cellular operators [58]. As a result, when
both WiFi and LTE interfaces are active, transmissions take
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Fig. 4. Example of acceptance factor A for � = 0.5

place via WiFi. The energy E

r

spent during the transmission
time ⌧

tx

is defined as:

E

r

=

Z
⌧

tx

0
P

tx

dt, (6)

where P

tx

is the power consumed for transmissions of WiFi
packets generated at rate �

g

[59]:
P

tx

= ⇢

id

+ ⇢

tx

· ⌧
tx

+ �

xg

· �
g

. (7)

4.2 Task Completion
To recruit users, the campaign organizer sustains a cost. For
each request sent to the users, the cost c associated to the task
w is equal to 1 unit of cost. The costs have a different nature.
For example, costs could be financial or expressed in terms
of the bandwidth used to broadcast recruitment messages.
Costs can also be social: contacting persistently a users who
has refused to accomplish to a task in previous timeslots, it is
likely to diminish the chances that s/he will accept the task.
The objective of the organizer is to minimize the total cost
sustained while maximizing the number of accomplished
tasks. The tradeoff between the recruitment cost and the
number of accomplished tasks defines the efficiency of the
recruitment policy.

Users with high recruitment factor are contacted and can
decide whether to accept or refuse the task. Upon acceptance,
the user acquires the recruited status. Acceptance is based
on user sociability and remaining battery charge. Users
with high values of sociability and energy factors, S and E

respectively, are more likely to accept the task. The acceptance
factor A is computed by the user devices and it is modelled
as a logarithmically increasing function:

A(S,E) = � · log(1 + S) + (1� �) · log(1 + E), (8)
where � is a balancing coefficient that shows a relative
importance between the sociability and energy factors. Fig. 4
shows the relation between A, S and E, which allows to
perform a fine-grain comparison of the task acceptance
probability of users with low versus high sociability and
energy ratings. For users with high values of sociability and
remaining battery charge, the acceptance factor A assumes
values close to 1. Vice versa, for users with low values of
sociability and remaining battery charge, a small difference
between two factors S1 and S2, E1 and E2 corresponds to a
considerable difference in the respective acceptance factors
A1 and A2.

Upon acceptance, the user acquires the recruited status and
contributes as long as s/he remains within a distance closer
than Dmax. In such a case, s/he is not contacted to contribute

to the same task any longer. Viceversa, users refusing a task
can be contacted again if the eligibility criteria are still met.
After rejection during timeslot t, a user is contacted again at
timeslot tnext, which is defined as follows:

tnext = t+ j · ⌧. (9)
The parameter ⌧ is a fixed number of timeslots the systems
backs off and j is the number of times the user has previously
refused the same task. Consequently, the higher the number
of rejection, the longer the system will wait before contacting
again the user for the same task.

System-level accuracy increases if the organizer does not
recruit persistently the same group of users to accomplish
a task [60]. For this reason, each task w acquires the status
accomplished if, during t, a given number N of individual
users are involved and contribute by reporting data. During
t

i

, whenever it is not possible to recruit a sufficient number
of users, the task i is marked as failed.

Like in social networks, some locations in cities are hubs,
i.e., they attract a large number of individuals, whereas others
do not [61]. To capture this phenomenon, each location l is
assigned a popularity factor P , and P can take real values
in the range [0, 1]. Practically, tasks associated to locations
with high popularity factor should require a high number
of users to successfully complete the task. In addition to the
location popularity, also the time dimension plays a crucial
role in defining N . Longer tasks require a higher number of
users than short ones to guarantee good levels of accuracy.
As a result, the number of users N

i

necessary to accomplish
the task i out of U is calculated as follows:

N

i

= P

i

· (t
i

/T ) · U . (10)

5 ANALYSIS OF USER SOCIABILITY

User sociability is one of the key parameters defining the
recruitment factor. Assessment of user sociability concept
through smart mobile devices was initially introduced with
the TrackMaison (Track My Activity in Social Networks)
framework in [55]. This study has been followed by [62],
where a framework was developed to continuously track
users interactions through popular social network services.
Each interaction through the device is translated into a
session that keeps track of the duration of the interaction,
data usage during the session, and location information to
detect possible anomalies. A normalized running average
value of the social network data usage of a user indicates
their sociability in a pool of mobile users. In the context of
crowdsensing, these users form the pool of participants.

TrackMaison analyzes data gathered from smartphone
sensors and users’ social network interactions for continuous
user identification/authentication with online behavioral bio-
metrics, also called behaviormetric identification/authentication.
The social networks considered are Facebook, Linkedin,
Whatsapp, Skype and Twitter. More in detail, the framework
collects information on the location of users, their data
usage, the number of sessions and the session duration.
TrackMaison monitors the user interaction with social medias,
trains the classifier and then feeds the identification process.

Two metrics are defined for identification/authentication:
the sociability activity rate and the sociability factor. The first is
based on the amount of data that a user produces when using
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(a) User 1 (b) User 2 (c) User 3

(d) User 4 (e) User 5 (f) User 6
Fig. 5. User profiles for sociability

social networking applications. The amount of time a user
spends on social networks defines the second metric, which is
used in the paper for user recruitment. The sociability factor
can be determined as the instantaneous, the short term or
the global component, or overall values. The instantaneous
sociability factor SF

Uu

app

x

ins

i

is calculated as the total time a
user spends on a social networking application in a single
session.

SF
Uu

app

x

ins

i

= t

Uu

app

x

i

. (11)

To compute the short term sociability factor SF
Uu

app

x

sh

i

, the
time spent on a social network application is averaged over
over a short time window ⌧ , e.g., a day.

SF
Uu

app

x

sh

=

✓X
t

Uu

app

x

i

◆
/⌧. (12)

The global component SF
Uu

app

x

overall

i

(T

k

) is defined as the
weighted sum of short term sociability factors:

SF
Uu

app

x

overall

(T

k

) = ⇢·SF
Uu

app

x

sh

(T

k

)+(1� ⇢)·SF
Uu

app

x

overall

(T

k�1) ,

(13)
where T

k

denotes the k � th short term sociability factor
used in the calculation, and ⇢ is a weight factor defining the
importance of short term social factor value and previous
overall social factor value. From the SF

Uu

app

x

overall

(T

k

) values,
the cloudlets determine S among all the users contributing
data to the campaign. For each user, the cloudlets compute
S as the aggregated overall sociability factors scaled by the
maximum aggregated sociability factors in the active users
pool.

S =

X

x2X
!

x

SF
Uu

app

x

overall

(T

k

)/ argmax

u2U

X

x2X
!

x

SF
Uu

app

x

overall

. (14)

The parameter !
x

is a weight factor unique for each mobile
social network application.

Fig. 5 and Table 3 show the analysis of sociability factor
performed over a real data set, with information collected

TABLE 3
User Sociability Factors

PROFILE SOCIAL FACTOR S

MEAN STANDARD DEVIATION

User 1 0.472 0.264
User 2 0.408 0.270
User 3 0.754 0.332
User 4 0.133 0.359
User 5 0.234 0.314
User 6 0.100 0.374

from 6 users for a period of 79 days. Each plot represents
the number of days each user has achieved a overall social
factor. Users are divided into two groups. In the first group,
Users 1, 2 and 3, show highly sociable profiles as for the
majority of the days they spend lot of time on social networks.
The second group of users, Users 4, 5 and 6, show low
sociable profiles as they achieve a low sociability factor for
the majority of the evaluation period.

6 PERFORMANCE EVALUATION

This section illustrates performance evaluation of the pro-
posed user recruitment policy for data acquisition in mobile
crowdsensing systems. We first propose novel performance
metrics and illustrate others Key Performance Indicators
(KPI) used for evaluation. Second, we outline the research
questions that the simulation results answer and, finally, we
analyze the simulation results.

6.1 Performance Metrics
The effectiveness of any recruitment policy can be defined
in terms of the number of contacted users that are actually
recruited. To quantify such effectiveness, we propose a novel
metric called User Recruitment Effectiveness (URE):

URE =

E [N

r

]

E [N

c

]

, (15)
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TABLE 4
Sensor and communication equipment parameters used for performance evaluation

SENSOR PARAMETER VALUE UNIT

Accelerometer Sample rate 50 Hz
Sample size 12 Bits
Current 35 µA

Temperature Sample rate 182 Hz
Sample size 16 Bits
Current 182 µA

Pressure Sample rate 157 Hz
Sample size 16 Bits
Current 423.9 µA

(a) Sensor

SYMBOL VALUE UNIT DESCRIPTION

⇢
id

3.68 W Power in idle mode
⇢
tx

0.37 W Transmission power
⇢
rx

0.31 W Reception power
�
g

1000 fps Rate of generation of packets
�
xg

0.11 · 10�3 J Energy cost to elaborate a generated packet

(b) Communication

where E [N

c

] and E [N

r

] correspond to the average number
of contacted and recruited users respectively. The URE metric
can assume real values in the range [0, 1]. Values of URE close
to 1 indicate efficient policies. Specifically, URE = 1 indicates
that all the contacted users were actually recruited.

In addition to measuring effectiveness of user recruitment,
it is also important to assess the number of the assigned
users per task and the number of accomplished tasks.
Having the capability to measure the former KPI allows the
organizer to properly set the recruitment policy. For example,
relaxing eligibility constraints for tasks with a low number
of users assigned would increase participation. Measuring
the number of accomplished tasks defines the overall system
effectiveness.

Having defined accomplished tasks, it becomes necessary
to measure their accuracy. Obviously, task accuracy depends
on time distribution of the contribution provided by the N

users. Let us consider the case for all the N users deliver
sensed data during the first timeslot t = 1 and remain idle
for the remaining T � 1 timeslots. Consequently, the task
is accomplished with poor accuracy. Conversely, if N users
contribute data uniformly along the entire period T , the task is
accomplished with high accuracy. The Global Task Accuracy
(GTA) metric quantifies accuracy of accomplished task as
follows:

GTA =

1

T

·

2

4
TX

t=1

x

t

· nt

N

�
TX

t=1

q ·

0

@
tX

j=1

y

t

1

A

3

5
, (16)

where n

t

is the number of users in timeslot t contributing
data and q is a penalization term, which reduces task
accuracy when in a given timeslot the contribution is null.
The term q is set to be inverse proportional to the number of
timeslots T :

q = 1/T. (17)
The rationale behind this choice is that having no contribu-
tion in one timeslot affects more severely short tasks than
longer ones. The penalization should be more severe if during
consecutive timeslots none of the users contributed data. For
this reason, in (16), q linearly increases with the number
of timeslots with no contribution. The terms x

t

and y

t

are
boolean variables:

x

t

=

(
1 if n

t

> 0;

0 otherwise.
, y

t

=

(
1 if n

t

= 0;

0 otherwise.
(18)

It is worth mentioning that both URE and GTA metrics
should not be computed run time, but after task completion,
i.e., when the duration T

i

of the task i has expired.

To properly define the accuracy of data collection, it is
necessary to measure the accuracy of sensing reading in
addition to the accuracy of task completion. The former is
application dependent and, for applications aiming at mon-
itoring phenomena like air or noise pollution, recruitment
policies play an essential role. Indeed, accuracy in monitoring
the phenomena increase if the same users are not persistently
recruited to accomplish a task [60].

6.2 Objectives of the Simulations Experiments
Simulation experiments are the candidate tool to assess
performance of MCS systems. The high number of par-
ticipants makes difficult to perform realistic experiments
with testbeds. Objective of the simulation experiments is to
validate the effectiveness of the sociability-driven recruitment
policy. Analysis of the computing, memory and storage
requirements of the fog platform is left to future works.

Simulation results seek answer to the following hypothe-
sis. As mobile applications are mostly used for interaction
with cloud services, if users can be identified based on social
contexts, those with higher social activity can be recruited
frequently, and the others can save energy. An interesting
trade-off could occur between the URE and energy/battery
drain of the users that are identified as highly sociable. The
objective of this paper is evaluating the energy consumption
and sensing costs of the overall crowd. Thus, while highly
sociable users can be preferred for the sake of accuracy and
recruitment effectiveness, they should also be compensated
effectively due to high communication and sensing costs.
However, addressing proper rewarding based on communi-
cation and sensing costs is left to future work as this problem
falls into the scope of user incentives in crowdsensing. By
evaluating the performance of the proposed scheme, answers
to the following research questions are sought:

• What is the impact of sociability-driven recruitment
policy on the effectiveness of recruiting the contacted
users and on the accuracy of the accomplished tasks?

• How are the sensing and communication costs im-
pacted when sociability is a key recruitment criterion?

• How the parameters of the framework impact the
main objective, the number of accomplished tasks?

6.3 Simulation Results
To evaluate and assess efficiency of the data acquisition
framework, we exploit CrowdSenSim [63]. CrowdSenSim
allows the researchers to perform analysis of crowdsensing
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TABLE 5
Simulation settings

PARAMETER VALUE

Number of users [1 000 - 10 000]
Overall evaluation period 8:00 AM - 2:00 PM
Time of travel per user Uniformly distributed in [10, 30] min
Average user velocity Uniformly distributed in [1, 1.5] m/s
Initial remaining charge
of the battery Uniformly distributed in [0.5, 0.9]

Timeslot duration 1 minute
Task duration 40 timeslots
Number of tasks 25
Number of cloudlets 6
Popularity factor P 0.2

activities in realistic urban scenarios. In this work, the
experiments take place in the city center of Luxembourg,
see Fig. 6(a).

The number of participants ranges from 2 000 to 10 000,
which corresponds to nearly one tenth of the population
of Luxembourg (107 340 inhabitants as of late 2014). For
simplicity, the start time of the walk is uniformly distributed
between 8:00 AM and 1:30 PM. Users walk for a period
of time that is uniformly distributed in [10, 30] minutes
with an average speed uniformly distributed in [1, 1.5] m/s.
Each participant has only one mobile device, whose initial
remaining charge of the battery is uniformly distributed
between [0.5, 0.9]. The devices are equipped with accelerom-
eter, temperature and pressure sensors, and transmit in-
formation using WiFi. As sensing equipment, the devices
exploit real sensors implemented in current smartphones
and tablets. Specifically, we select the FXOS8700CQ 3axis
linear accelerometer from Freescale Semiconductor [64] and
the BMP280 from Bosch [65], which is a digital pressure
and temperature sensor. Equation (7) describes WiFi power
consumption the devices spend for communication. Table 4
presents the detailed information on communication and the
parameters. The participants push data to the collector while
walking. Once the period of walking ends, they stop moving
and contributing. As a consequence, users can contribute for
only a small portion of the day, which allows us to study the
system performance under a relatively worst case scenario.
Each user has an associated sociability profile according to
Table 3.

A set of 6 cloudlets dispatching 25 tasks is deployed
in different locations of the city, see Fig. 6(b). The starting
time of each task is distributed uniformly in the time period
8:00 AM - 2:00 PM. Table 5 lists the details on the simulation
settings. For simplicity, each task lasts 40 timeslots and
each timeslot corresponds to 1 minute. In the first set of
experiments, the popularity factor P of each location, the
minimum recruitment factor Rmin and the maximum task
coverage radius Dmax are fixed and set equal to 0.2, 0.55 and
55 m respectively.

6.3.1 Performance of the DSE Policy

Having fixed the parameters of the recruitment policy
↵ = � = � = 0.33 and � = 0.5, Fig. 7 shows the number of
contacted and recruited or assigned users per task. Tasks
are grouped according to the initial time of deployment
The number of contacted users corresponds to the cost
the system sustains for recruitment. In this experiment,
we compare the performance of the DSE policy with a

recruitment policy where the distance is the only criterion
defining user eligibility. We denote this policy as Distance-
Based policy (DB) and requires to set ↵ = 1, � = � = 0. The
DSE policy outperforms the DB policy in terms of the number
of users recruited. The average number of recruited users per
task is 21.23 and 17.08 for DSE and DB respectively, which
corresponds to an increase of 19.55%. Moreover, when the
DB policy fails to contact users like in task # 3 or contacts very
few users like in task # 1, the DSE policy makes a significant
difference. Consequently, considering user sociability and
remaining battery of charge of the devices in addition to
task spatial coverage is an effective solution for recruitment.
Although being more efficient in recruiting users, the DSE
policy is more costly than the DB policy. The average number
of contacted users is 45.4, while for the DB policy is 32.92,
which corresponds to an increase of costs of around 27%.

Fig. 8 details the number of unique users assigned to each
task. The gray line plots N , the minimum number of users
necessary to denote a task as accomplished. N is computed
by (10) and is equal for all the tasks as the location popularity
and the task duration have been fixed. Consequently, partial
relaxation of any of the constraints on task completion would
increase the number of accomplished tasks. As it is possible
to see, DSE accomplishes 10 tasks out of 25 and one more is
close to completion. On the other hand, DB accomplishes 7
tasks and two are close to completion. Only the campaign
organizer can compare the tradeoff between cost increase
and return, and pursue proper measures, e.g., to reduce the
cost of user recruitment.

Fig. 9 evaluates the efficiency of recruitment and accuracy
of task completion with URE and GTA metrics. The recruit-
ment efficiency of the campaign, computed as an average of
the URE values of each task, is 0.46. As a consequence, under
the current settings, the systems contacts many users that
refuse to contribute to the campaign. It is worth mentioning
that for accomplished tasks such as task # 2 (see Fig. 8), the
values of URE metric are always equal to or higher than 0.5.
Therefore, for accomplished tasks, the recruitment process
is more efficient as at leas half of the contacted users are
actually recruited. The system achieves the highest efficiency
in recruitment for task # 3 although the number of recruited
users is only 4 and the task is not successfully accomplished.
Fig. 9(b) plots values of GTA metric per task. In general, the
tasks are not carried out with very high accuracy. The main
reason is that only few users out of N contribute to the task.
The second most important reason is that not all the N users
remain for the entire duration of the task under the maximum
task coverage radius Dmax. For example, task # 3 is carried
out with very low accuracy because few users contribute for
a very short duration. As a result the penalization component
in (16) diminishes considerably the achieved accuracy.

6.3.2 Analysis of User Energy Consumption

This section evaluates the battery drain of user devices.
Fig. 10 shows the distribution of user energy consumption for
sensing and data reporting. As expected, both distributions
follow the same profile because data after being collected
from the sensor is immediately delivered. Fig. 10(a) shows
the distribution of users battery consumption due to sensing
operations. The results are measured in form of current drain.
The vast majority of the users spends little amount of energy
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(a) Street-level information (b) Location of sensing tasks and cloudlets
Fig. 6. Map of Luxembourg

(a) DSE Policy (b) DB Policy
Fig. 7. Number of contacted versus recruited users. Distance-based (DB) policy is used as baseline for comparison.

Fig. 8. Number of assigned users per task

for sensing. The motivation is twofold. First, many users
contribute to only one task and because of the mobility, they
contribute for few timeslots. Second, modern sensors are
designed to be energy efficient. When compared with the
battery capacity available in today smartphones, which is in
the order of 2500 mAh, it is clear that the energy consumed
for sensing is negligible with respect to the energy spent for
communications (see Fig. 10(b)).

6.3.3 Analysis of Model Control Parameters

Having evaluated the performance of the DSE policy, in this
section we study the impact of all main parameters such as
the minimum recruitment factor Rmin and the maximum task
coverage radius Dmax. We also evaluate the influence of the
number of users presents in the system as well as the control
parameters ↵, �, � and �. For the evaluation, we exploit as
common performance metric the average, over 100 runs, of
the number of successfully accomplished tasks. The results
are expressed in percentage and the bars indicate the 95%
confidence interval.

Fig. 11 evaluates the impact of the minimum recruitment
factor Rmin. Proper tuning of this parameter is important:
high values of Rmin make the user selection strict and only
few users will be eligible for recruitment. On the other
hand, low values of Rmin relax the conditions for eligibility
allowing the system to contact more users. The plot confirms
the model: for values of Rmin < 0.5, the percentage of
accomplished tasks is higher than 10%. Indeed, contacting
more users it increases the chances of having exactly N

users assigned to a task, which is the minimum number of
individual users necessary to denote the task as successfully
accomplished.

Having fixed Rmin = 0.3 from this point on, Fig. 12
evaluates the impact of the maximum task coverage radius
Dmax. The higher the values Dmax assume, the larger is
the area users can be contacted. The plot highlights this
property and it is interesting to note a linear increase of
the percentage of accomplished tasks for values of Dmax in
the range [30 � 70] m, while for Dmax > 70 the increase
becomes smoother. The behavior suggests that increasing the
maximum task coverage radius significantly helps to contact
higher number of users and to cope with user movement.
However, recruiting users far from the location of the sensing
task may result in poor accuracy for particular applications.
For example, if the sensing task requires users to take a
picture, being closer to the location of the task is crucial. On
the other hand, for the vast majority of S2aaS applications
requiring monitoring of phenomena such as noise or air
pollution, temperature and pressure, having users far for the
location of the sensing task can be acceptable.

The previous experiments were conducted having fixed



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 11

(a) URE (b) GTA
Fig. 9. Evaluation of recruitment efficiency and task accuracy with the new performance metrics

(a) Sensing Cost (b) Communication Cost
Fig. 10. User distribution for energy

Fig. 11. Average number of successfully accomplished tasks with
increasing values of minimum recruitment factor Rmin

Fig. 12. Average number of successfully accomplished tasks with
increasing values of radius Dmax

Fig. 13. Average number of successfully accomplished tasks with
increasing number of users in the system

the population. The following analysis aims to assess the
impact of the total number of users in the system U . A higher
number of users in the system makes larger the selection
pool and, intuitively, should favor task accomplishment.
However, the hypothesis has to be verified for two reasons:
(i) the proportionality between N and U , see (10), and
(ii) the limited period the users move with respect to the
total evaluation period (see Table 5) may lead users be
active when the task already expired or did not started
yet. Having set Dmax = 70 m, Fig. 13 shows that the number
of tasks accomplished increases with the number of users U .
The number of accomplished tasks increases substantially
(around 40%), when the population in the system changes
from 3 k to 7 k. Because of the aforementioned reasons, the
increase becomes more gentle when the number of users in
the systems is greater than 7 k.

Having analyzed the impact of the population on the
system, in the next experiments we verify the sensitivity of
DSE to the control parameters ↵, � and �. These parameters
define the importance of distance, sociability and energy to
compute R, see (2). In each experiment, we vary the value
of one parameter, while the other two are set identically
so that the sum equals one. For the analysis, the number
of users in the system is set to 10 000. Fig. 14(a) shows the
impact of ↵. High values of ↵ make the distance the most
important factor for recruitment and the plot shows that for
↵ > 0.4 the percentage of successfully accomplished tasks
remains almost constant. As a result, the selection of any
values of ↵ > 0.4 are a good choice to maximize the number
of accomplished tasks. Fig. 14(b) shows the impact of �,
which defines the importance of sociability for R. Unlike
the previous case, setting the parameter � = 0.3 leads to
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(a) Parameter ↵ (b) Parameter � (c) Parameter �
Fig. 14. Impact of the recruiting factor R control parameters on the system performance

Fig. 15. Impact of the parameter � defining the acceptance factor A on
the system performance

the highest percentage of accomplished tasks. It is worth
noting that high values of �, i.e., � > 0.5 should be avoided.
Contacting users for recruitment on the sole basis of their
sociability value without considering their location or the
remaining charge of the battery lowers the probability to
recruit a sufficient number of users. Fig. 14(c) shows the
impact of �, which defines the importance of the energy. The
plot shows that the higher the values � assume, the higher
is the number of accomplished tasks. From the analysis, �
appears to be the most important for proper setting of the
parameters.

Fig. 15 analyzes the impact of the parameter �, having
fixed ↵ = 0.35, � = 0.3 and � = 0.35 according to the
previous study. The parameter � defines the importance
of sociability and energy for task acceptance, see (8). The
majority of the tasks are carried out successfully when user
acceptance is mainly driven by energy, i.e., � < 0.3. The
motivation for the high performance lies in the current
evaluation settings, as most of the users have high battery
charge at disposal. With the setting � > 0.8, the performance
dramatically decrease because only highly sociable users
accept the task.

7 CONCLUSION

In this paper we have proposed a novel framework for data
acquisition in MCS deployed over a fog computing platform.
The cloudlets in the fog facilitate user recruitment and task
completion. We present a new user recruitment policy called
DSE (Distance, Sociability, Energy), which is based on the
distance between users and tasks, the user sociability and the
energy of user devices. Novel performance metrics are then
introduced to assess the efficiency of recruitment policy and
the accuracy of task completion. Performance evaluation is
conducted with CrowdSenSim simulator in a realistic urban
environment for a large number of participants. The results
reveal that average number of recruited users improves by
nearly 20% if compared to policies using spatial distance

as the only selection criterion. Moreover, the users spend
most of the energy for delivering data and not for sensing
operation.

As future work, we plan to extend the work in two main
directions. On one hand, we will strength the simulator ca-
pabilities to take into account multiple network technologies
as well as a more detailed model of computing, memory and
storage requirements of cloudlets. On the other hand, we
plan develop a prototype to investigate in realist scenario the
performance of the framework in the fog domain.
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